Local hemodynamic changes caused by main branch stent implantation and subsequent virtual side branch balloon angioplasty in a representative coronary bifurcation

Author:

Williams Andrew R.1,Koo Bon-Kwon23,Gundert Timothy J.1,Fitzgerald Peter J.2,LaDisa John F.145

Affiliation:

1. Department of Biomedical Engineering, Marquette University, Milwaukee, Wisconsin;

2. Center for Cardiovascular Technology, Stanford University Medical Center, Stanford, California;

3. Seoul National University College of Medicine, Seoul, Korea; and

4. Department of Medicine, Medical College of Wisconsin and

5. Department of Pediatrics, Children's Hospital of Wisconsin, Milwaukee, Wisconsin

Abstract

Abnormal blood flow patterns promoting inflammation, cellular proliferation, and thrombosis may be established by local changes in vessel geometry after stent implantation in bifurcation lesions. Our objective was to quantify altered hemodynamics due to main vessel (MV) stenting and subsequent virtual side branch (SB) angioplasty in a coronary bifurcation by using computational fluid dynamics (CFD) analysis. CFD models were generated from representative vascular dimensions and intravascular ultrasound images. Time-averaged wall shear stress (TAWSS), oscillatory shear index (OSI), and fractional flow reserve (FFR) were quantified. None of the luminal surface was exposed to low TAWSS (<4 dyn/cm2) in the nondiseased bifurcation model. MV stenting introduced eccentric areas of low TAWSS along the lateral wall of the MV. Virtual SB angioplasty resulted in a more concentric region of low TAWSS in the MV distal to the carina and along the lateral wall of the SB. The luminal surface exposed to low TAWSS was similar before and after virtual SB angioplasty (rest: 43% vs. 41%; hyperemia: 18% vs. 21%) and primarily due to stent-induced flow alterations. Sites of elevated OSI (>0.1) were minimal but more impacted by general vessel geometry established after MV stenting. FFR measured at a jailed SB was within the normal range despite angiographic stenosis of 54%. These findings indicate that the most commonly used percutaneous interventional strategy for a bifurcation lesion causes abnormal local hemodynamic conditions. These results may partially explain the high clinical event rates in bifurcation lesions.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3