Elastase-coupled beads as a tool for characterizing localized alveolar tissue destruction associated with the onset of emphysema

Author:

Craig J. M.1,Scott A. L.1,Mitzner W.2

Affiliation:

1. Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland; and

2. Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland

Abstract

Intratracheal elastase challenge of laboratory animals has long been established as a model for observing the physiological and morphological changes that result from alveolar destruction, the hallmark of emphysema. However, instillation of elastase suspended in buffer results in widespread inflammation and variable emphysematous lesions, which has made the identification of specific cellular and molecular events associated with the onset of emphysema difficult to define. Here we establish a bead-based elastase delivery system that induces localized tissue destruction, a key event in the initiation of emphysema. Elastase was coupled to bisacrylamide beads, which were shown to retain enzymatic activity prior to intratracheal administration in mice. C57BL/6 mice were given a single dose of 40,000 beads, which became distributed throughout the small airways and parenchyma of the lung. Elastase-coupled beads resulted in a quantifiable loss of alveolar tissue immediately surrounding the beads, an effect that was not observed with beads that lacked protein altogether or with beads containing elastase inactivated by an irreversible inhibitor. Furthermore, beads bound with active elastase elicited local recruitment of mononuclear cells, including macrophages, and polymorphonuclear neutrophils to the site of bead deposition, a feature consistent with the cellular infiltration observed following conventional solubilized elastase challenges. This work identifies a novel bead-based enzyme delivery system that also extends the elastase model of emphysema to permit the characterization of mechanisms that drive alveolar surface area loss following elastin degradation in focal emphysematous lesions.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3