Author:
Grahn Dennis A.,Cao Vinh H.,Heller H. Craig
Abstract
In situations where the accumulation of internal heat limits physical performance, enhanced heat extraction from the body should improve performance capacity. The combined application of local subatmospheric pressure (35–45 mmHg) to an entire hand (to increase blood volume) and a heat sink (18–22°C) to the palmar surface were used to draw heat out of the circulating blood. Subjects walked uphill (5.63 km/h) on a treadmill in a 40°C environment. Slopes of the treadmill were held constant during paired experimental trials (with and without the device). Heat extraction attenuated the rate of esophageal temperature rise during exercise (2.1 ± 0.4° and 2.9 ± 0.5°C/h, mean ± SE, with and without the device, respectively; n = 8) and increased exercise duration (46.1 ± 3.4 and 32.3 ± 1.7 min with and without the device, respectively; n = 18). Hand cooling alone had little effect on exercise duration (34.1 ± 3.0, 38.0 ± 3.5, and 57.0 ± 6.4 min, for control, cooling only, and cooling, and subatmospheric pressure, respectively; n = 6). In a longer term study, nine subjects participated in two or four trials per week for 8 wk. The individual workloads (treadmill slope) were varied weekly. Use of the device had a beneficial effect on exercise endurance at all workloads, but the benefit proportionally decreased at higher workloads. It is concluded that heat can be efficiently removed from the body by using the described technology and that such treatment can provide a substantial performance benefit in thermally stressful conditions.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
56 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献