Lower-body negative pressure restores leg bone microvascular flow to supine levels during head-down tilt

Author:

Siamwala Jamila H.1ORCID,Lee Paul C.1,Macias Brandon R.1,Hargens Alan R.1

Affiliation:

1. Department of Orthopedic Surgery, University of California, San Diego, California

Abstract

Skeletal unloading and cephalic fluid shifts in microgravity may alter the bone microvascular flow and may be associated with the 1-2% bone loss per month during spaceflight. The purpose of this study was to determine if lower-body negative pressure (LBNP) can prevent microgravity-induced alterations of tibial microvascular flow. Head-down tilt (HDT) simulates the cephalad fluid shift and microvascular flow responses that may occur in microgravity. We hypothesized that LBNP prevents HDT-induced increases in tibial microvascular flow. Tibial bone microvascular flow, oxygenation, and calf circumference were measured during 5 min sitting, 5 min supine, 5 min 15° HDT, and 10 min 15° HDT with 25 mmHg LBNP using photoplethysmography (PPG), near-infrared spectroscopy (NIRS), and strain-gauge plethysmography (SGP). Measurements were made simultaneously. Tibial microvascular flow increased by 36% with 5 min 15° HDT [2.2 ± 1.1 V; repeated-measures ANOVA (RMANOVA) P < 0.0001] from supine (1.4 ± 0.8 V). After 10 min of LBNP in the 15° HDT position, tibial microvascular flow returned to supine levels (1.1 ± 0.5 V; RMANOVA P < 0.001). Tibial oxygenation did not change significantly during sitting, supine, HDT, or HDT with LBNP. However, calf circumference decreased with 5 min 15° HDT (−0.7 ± 0.4 V; RMANOVA P < 0.0001) from supine (−0.5 ± 0.4 V). However, with LBNP calf circumference returned to supine levels (−0.4 ± 0.1 V; RMANOVA P = 0.002). These data establish that simulated microgravity increases tibial microvascular flow and LBNP prevents these increases. The results suggest that LBNP may provide a suitable countermeasure to normalize the bone microvascular flow during spaceflight.

Funder

Wood Whelan Fellowship

National Space Biomedical Research Institute

NASA Grant

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3