Contribution of orexin in hypercapnic chemoreflex: evidence from genetic and pharmacological disruption and supplementation studies in mice

Author:

Deng Ben-Shiang,Nakamura Akira,Zhang Wei,Yanagisawa Masashi,Fukuda Yasuichiro,Kuwaki Tomoyuki

Abstract

We have previously shown that hypercapnic chemoreflex in prepro-orexin knockout mice (ORX-KO) is attenuated during wake but not sleep periods. In that study, however, hypercapnic stimulation had been chronically applied for 6 h because of technical difficulty in changing the composition of the inspired gas mixture without distorting the animal's vigilance states. In the present study we examined possible involvement of orexin in acute respiratory chemoreflex during wake periods. Ventilation was recorded together with electroencephalography and electromyography before and after intracerebroventricular administration of orexin or an orexin receptor antagonist, SB-334867. A hypercapnic (5 or 10% CO2) or hypoxic (15 or 10% O2) gas mixture was introduced into the recording chamber for 5 min. Respiratory parameters were analyzed only for quiet wakefulness. When mice breathed normal room air, orexin-A and orexin-B but not vehicle or SB-334867 increased minute ventilation in both ORX-KO and wild-type (WT) mice. As expected, hypercapnic chemoreflex in vehicle-treated ORX- KO mice (0.22 ± 0.03 ml·min−1·g−1·% CO2−1) was significantly blunted compared with that in WT mice (0.51 ± 0.05 ml·min−1·g−1·% CO2−1). Supplementation of orexin-A or -B (3 nmol) partially restored the hypercapnic chemoreflex in ORX-KO mice (0.28 ± 0.03 ml·min−1·g−1·% CO2−1 for orexin-A and 0.32 ± 0.04 ml·min−1·g−1·% CO2−1 for orexin-B). In addition, injection of SB-334867 (30 nmol) in WT mice decreased the hypercapnic chemoreflex (0.39 ± 0.04 ml·min−1·g−1·% CO2−1). On the other hand, hypoxic chemoreflex in vehicle-treated ORX-KO and SB-334867-treated WT mice was not different from that in corresponding controls. Our findings suggest that orexin plays a crucial role in CO2 sensitivity at least during wake periods in mice.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3