Hypoglycemia Activates Orexin Neurons and Selectively Increases Hypothalamic Orexin-B Levels

Author:

Cai Xue J.1,Evans Martyn L.1,Lister Carolyn A.1,Leslie Ron A.1,Arch Jonathan R. S.1,Wilson Shelagh1,Williams Gareth1

Affiliation:

1. From the Diabetes and Endocrinology Research Group (X.J.C., G.W.), University of Liverpool, Liverpool; and the Divisions of Neuroscience (M.L.E., R.A.L.) and Vascular Biology (C.A.L., J.R.S.A., S.W.), SmithKline Beecham Pharmaceuticals, Harlow, U.K.

Abstract

Orexins are novel appetite-stimulating peptides expressed in the lateral hypothalamic area (LHA), and their expression is stimulated by hypoglycemia in fasted rats. We investigated activation of orexin and other neurons during insulin-induced hypoglycemia using the immediate early gene product Fos. Insulin (50 U/kg) lowered plasma glucose by >50% after 5 h and stimulated feeding sixfold compared with saline-injected controls. Hypoglycemic rats allowed to feed and normoglycemic controls both showed sparse Fos-positive (Fos+) neurons in the LHA and the paraventricular nucleus (PVN) and arcuate nucleus (ARC) and showed none in the nucleus of the solitary tract (NTS), which relays visceral feeding signals to the LHA. In the LHA, total numbers of Fos+ neurons were comparable in fed hypoglycemic and control groups (60 ± 6 vs. 52 ± 4 cells/mm2, P > 0.05), as were Fos+ neurons immunoreactive for orexin (1.4 ± 0.4 vs. 0.6 ± 0.4 cells/mm2, P > 0.05). By contrast, hypoglycemic rats that were fasted showed significantly more Fos+ nuclei in the LHA (96 ± 10 cells/mm2, P < 0.05, vs. both other groups) and Fos+ orexin neurons (8.4 ± 3.3 cells/mm2, P < 0.001, vs. both other groups). They also showed two- to threefold more Fos+ nuclei (P < 0.001) in the PVN and ARC than both fed hypoglycemic rats and controls and showed strikingly abundant Fos+ neurons in the NTS and dorsal motor nucleus of the vagus. In parallel studies, whole hypothalamic orexin-A levels were not changed in hypoglycemic rats, whether fasted or freely fed, whereas orexin-B levels were 10-fold higher in hypoglycemic fasted rats than in control and hypoglycemic fed groups. These data support our hypothesis that orexin neurons are stimulated by falling glucose levels but are readily inhibited by signals related to nutrient ingestion and suggest that they may functionally link with neuronal activity in the NTS. Orexin-A and -B may play specific roles in behavioral or neuroendocrine responses to hypoglycemia.

Publisher

American Diabetes Association

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3