Affiliation:
1. Laboratorio di Ingegneria del Sistema Neuromuscolare, Dipartimento di Elettronica, Politecnico di Torino, Torino, 10129 Italy
Abstract
The aim of this study was to interpret changes in experimentally recorded M waves with progressive motor unit (MU) activation based on simulation of the surface electromyogram. Activation order during transcutaneous electrical stimulation was analyzed by investigating M-wave average rectified value, spectral properties, and conduction velocity (CV) during electrically elicited contractions. M-waves were detected from the biceps brachii muscle of 10 healthy male subjects by a linear adhesive array of eight electrodes. Electrical stimulation was delivered to the motor point at either constant current intensity (40, 60, 80, and 100% of the supramaximal stimulation current) or with linearly increasing current. A model of surface electromyogram generation that varied activation order based on MU size and location was used to interpret the experimental results. From the experimental and model analysis, it was found that 1) MUs tended to be activated from low to high CV and from the superficial to the deep muscle layers with increasing transcutaneous electrical stimulation of the biceps brachii muscle, and 2) characteristic spectral frequencies of the M-wave were affected by many factors other than average CV (such as the activation order by MU location or the spread of the MU innervation zones and CVs), thus decreasing with a concomitant increase in CV during progressive MU activation.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
50 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献