Dynamic correction for parallel conductance, GP, and gain factor, α, in invasive murine left ventricular volume measurements

Author:

Porterfield John E.1,Kottam Anil T. G.2,Raghavan Karthik1,Escobedo Daniel3,Jenkins James T.34,Larson Erik R.1,Treviño Rodolfo J.3,Valvano Jonathan W.1,Pearce John A.1,Feldman Marc D.234

Affiliation:

1. Departments of Electrical and Computer Engineering, and

2. Biomedical Engineering, The University of Texas, Austin;

3. Division of Cardiology, The University of Texas Health Science Center, San Antonio; and

4. The South Texas Veterans Health Care System, San Antonio, Texas

Abstract

The conductance catheter technique could be improved by determining instantaneous parallel conductance (GP), which is known to be time varying, and by including a time-varying calibration factor in Baan's equation [α( t)]. We have recently proposed solutions to the problems of both time-varying GP and time-varying α, which we term “admittance” and “Wei's equation,” respectively. We validate both our solutions in mice, compared with the currently accepted methods of hypertonic saline (HS) to determine GP and Baan's equation calibrated with both stroke volume (SV) and cuvette. We performed simultaneous echocardiography in closed-chest mice ( n = 8) as a reference for left ventricular (LV) volume and demonstrate that an off-center position for the miniaturized pressure-volume (PV) catheter in the LV generates end-systolic and diastolic volumes calculated by admittance with less error ( P < 0.03) (−2.49 ± 15.33 μl error) compared with those same parameters calculated by SV calibrated conductance (35.89 ± 73.22 μl error) and by cuvette calibrated conductance (−7.53 ± 16.23 μl ES and −29.10 ± 31.53 μl ED error). To utilize the admittance approach, myocardial permittivity (εm) and conductivity (σm) were calculated in additional mice ( n = 7), and those results are used in this calculation. In aortic banded mice ( n = 6), increased myocardial permittivity was measured (11,844 ± 2,700 control, 21,267 ± 8,005 banded, P < 0.05), demonstrating that muscle properties vary with disease state. Volume error calculated with respect to echo did not significantly change in aortic banded mice (6.74 ± 13.06 μl, P = not significant). Increased inotropy in response to intravenous dobutamine was detected with greater sensitivity with the admittance technique compared with traditional conductance [4.9 ± 1.4 to 12.5 ± 6.6 mmHg/μl Wei's equation ( P < 0.05), 3.3 ± 1.2 to 8.8 ± 5.1 mmHg/μl using Baan's equation ( P = not significant)]. New theory and method for instantaneous GP removal, as well as application of Wei's equation, are presented and validated in vivo in mice. We conclude that, for closed-chest mice, admittance (dynamic GP) and Wei's equation (dynamic α) provide more accurate volumes than traditional conductance, are more sensitive to inotropic changes, eliminate the need for hypertonic saline, and can be accurately extended to aortic banded mice.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3