Affiliation:
1. Department of Medicine, University of California, San Diego, La Jolla, California;
2. Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
3. Department of Radiology, University of California, San Diego, La Jolla, California;
Abstract
Lung deposition of >0.5-μm particles is strongly influenced by gravitational sedimentation, with deposition being reduced in microgravity (μG) compared with normal gravity (1G). Gravity not only affects total deposition, but may also alter regional deposition. Using gamma scintigraphy, we measured the distribution of regional deposition and retention of radiolabeled particles (99mTc-labeled sulfur colloid, 5-μm diameter) in five healthy volunteers. Particles were inhaled in a controlled fashion (0.5 l/s, 15 breaths/min) during multiple periods of μG aboard the National Aeronautics and Space Administration Microgravity Research Aircraft and in 1G. In both cases, deposition scans were obtained immediately postinhalation and at 1 h 30 min, 4 h, and 22 h postinhalation. Regional deposition was characterized by the central-to-peripheral ratio and by the skew of the distribution of deposited particles on scans acquired directly postinhalation. Relative distribution of deposition between the airways and the alveolar region was derived from data acquired at the various time points. Compared with inhalation in 1G, subjects show an increase in central-to-peripheral ratio ( P = 0.043), skew ( P = 0.043), and tracheobronchial deposition ( P < 0.001) when particles were inhaled in μG. The absence of gravity caused fewer particles to deposit in the lung periphery than in the central region where deposition occurred mainly in the airways in μG. Furthermore, the increased skew observed in μG likely illustrates the presence of localized areas of deposition, i.e., “hot spots”, resulting from inertial impaction. In conclusion, gravity has a significant effect on deposition patterns of coarse particles, with most of deposition occurring in the alveolar region in 1G but in the large airways in μG.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献