Carotid artery pulse wave time characteristics to quantify ventriculoarterial responses to orthostatic challenge

Author:

Reesink Koen D.,Hermeling Evelien,Hoeberigs M. Christianne,Reneman Robert S.,Hoeks Arnold P. G.

Abstract

Central blood pressure waveforms contain specific features related to cardiac and arterial function. We investigated posture-related changes in ventriculoarterial hemodynamics by means of carotid artery (CA) pulse wave analysis. ECG, brachial cuff pressure, and common CA diameter waveforms (by M-mode ultrasound) were obtained in 21 healthy volunteers (19–30 yr of age, 10 men and 11 women) in supine and sitting positions. Pulse wave analysis was based on a timing extraction algorithm that automatically detects acceleration maxima in the second derivative of the CA pulse waveform. The algorithm enabled determination of isovolumic contraction period (ICP) and ejection period (EP): ICP = 43 ± 8 (SD) ms (4-ms precision), and EP = 302 ± 16 (SD) ms (5-ms precision). Compared with the supine position, in the sitting position diastolic blood pressure (DBP) increased by 7 ± 4 mmHg ( P < 0.001) and R-R interval decreased by 49 ± 82 ms ( P = 0.013), reflecting normal baroreflex response, whereas EP decreased to 267 ± 19 ms ( P < 0.001). Shortening of EP was significantly correlated to earlier arrival of the lower body peripheral reflection wave ( r2 = 0.46, P < 0.001). ICP increased by 7 ± 7 ms ( P < 0.001), the ICP-to-EP ratio increased from 14 ± 3% (supine) to 19 ± 3% ( P < 0.001) and the DBP-to-ICP ratio decreased by 7% ( P = 0.023). These results suggest that orthostasis decreases left ventricular output as a result of arterial wave reflections and, presumably, reduced cardiac preload. We conclude that CA ultrasound and pulse wave analysis enable noninvasive quantification of ventriculoarterial responses to changes in posture.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3