On the use of fractional calculus to improve the pulse arrival time (PAT) detection when using photoplethysmography (PPG) and electrocardiography (ECG) signals

Author:

Mohammadpoor Faskhodi MahtabORCID,A. Garcia-Gonzalez MiguelORCID,Fernandez-Chimeno Mireya,Guede-Fernández FedericoORCID,Mateu-Mateus Marc,Capdevila Lluis,J. Ramos-Castro Juan

Abstract

The pulse arrival time (PAT) has been considered a surrogate measure for pulse wave velocity (PWV), although some studies have noted that this parameter is not accurate enough. Moreover, the inter-beat interval (IBI) time series obtained from successive pulse wave arrivals can be employed as a surrogate measure of the RR time series avoiding the use of electrocardiogram (ECG) signals. Pulse arrival detection is a procedure needed for both PAT and IBI measurements and depends on the proper fiducial points chosen. In this paper, a new set of fiducial points that can be tailored using several optimization criteria is proposed to improve the detection of successive pulse arrivals. This set is based on the location of local maxima and minima in the systolic rise of the pulse wave after fractional differintegration of the signal. Several optimization criteria have been proposed and applied to high-quality recordings of a database with subjects who were breathing at different rates while sitting or standing. When a proper fractional differintegration order is selected by using the RR time series as a reference, the agreement between the obtained IBI and RR is better than that for other state-of-the-art fiducial points. This work tested seven different traditional fiducial points. For the agreement analysis, the median standard deviation of the difference between the IBI and RR time series is 5.72 ms for the proposed fiducial point versus 6.20 ms for the best-performing traditional fiducial point, although it can reach as high as 9.93 ms for another traditional fiducial point. Other optimization criteria aim to reduce the standard deviation of the PAT (7.21 ms using the proposed fiducial point versus 8.22 ms to 15.4 ms for the best- and worst-performing traditional fiducial points) or to minimize the standard deviation of the PAT attributable to breathing (3.44 ms using the proposed fiducial point versus 4.40 ms to 5.12 ms for best- and worst-performing traditional fiducial points). The use of these fiducial points may help to better quantify the beat-to-beat PAT variability and IBI time series.

Funder

Ministerio de Ciencia e Innovación

Publisher

Public Library of Science (PLoS)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3