A novel ultrasound technique to measure genioglossus movement in vivo

Author:

Kwan Benjamin C. H.12,Butler Jane E.12,Hudson Anna L.12,McKenzie David K.12,Bilston Lynne E.12,Gandevia Simon C.12

Affiliation:

1. Neuroscience Research Australia, Sydney, New South Wales, Australia; and

2. University of New South Wales, Sydney, New South Wales, Australia

Abstract

Upper airway muscles are important in maintaining airway patency. Visualization of their dynamic motion should allow measurement, comparison, and further understanding of their roles in healthy subjects and those with upper airway disorders. Currently, there are few clinically feasible real-time imaging methods. Methods such as tagged magnetic resonance imaging have documented movement of genioglossus (GG), the largest upper airway dilator. Inspiratory movement was largest in the posterior region of GG. This study aimed to develop a novel ultrasound (US) method to measure GG movement in real time. We tested 20 healthy, awake subjects (21–38 yr) breathing quietly in the supine posture with the head in a neutral position. US images were collected using a transducer positioned submentally. Image correlation analysis measured regional displacement of GG within a grid of points in the midsagittal plane throughout the respiratory cycle. Typically, motion began before inspiratory flow in an anteroinferior direction and peaked in midinspiration. Average peak displacements of the anterior, posterior, superior, and inferior grid points were 0.44 ± 0.23 (mean ± SD), 0.57 ± 0.35, 0.38 ± 0.20, and 0.62 ± 0.41 mm, respectively. Largest displacements occurred in the most inferoposterior part (0.70 ± 0.48 mm). This method had good intrarater repeatability within the same testing session, as well as across sessions. We have devised a simple noninvasive US method, which should be a useful tool to assess GG movement in normal subjects and those with sleep-disordered breathing.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3