Biomechanical properties of the human upper airway and their effect on its behavior during breathing and in obstructive sleep apnea

Author:

Bilston Lynne E.1,Gandevia Simon C.1

Affiliation:

1. Neuroscience Research Australia and Prince of Wales Clinical School, University of New South Wales, New South Wales, Sydney, Australia

Abstract

The upper airway is a complex, multifunctional, dynamic neuromechanical system. Its patency during breathing requires moment-to-moment coordination of neural and mechanical behavior and varies with posture. Failure to continuously recruit and coordinate dilator muscles to counterbalance the forces that act to close the airway results in hypopneas or apneas. Repeated failures lead to obstructive sleep apnea (OSA). Obesity and anatomical variations, such as retrognathia, increase the likelihood of upper airway collapse by altering the passive mechanical behavior of the upper airway. This behavior depends on the mechanical properties of each upper airway tissue in isolation, their geometrical arrangements, and their physiological interactions. Recent measurements of respiratory-related deformation of the airway wall have shown that there are different patterns of airway soft tissue movement during the respiratory cycle. In OSA patients, airway dilation appears less coordinated compared with that in healthy subjects (matched for body mass index). Intrinsic mechanical properties of airway tissues are altered in OSA patients, but the factors underlying these changes have yet to be elucidated. How neural drive to the airway dilators relates to the biomechanical behavior of the upper airway (movement and stiffness) is still poorly understood. Recent studies have highlighted that the biomechanical behavior of the upper airway cannot be simply predicted from electromyographic activity (electromyogram) of its muscles.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3