Pulmonary ventilation visualized using hyperpolarized helium-3 and xenon-129 magnetic resonance imaging: differences in COPD and relationship to emphysema

Author:

Kirby Miranda12,Svenningsen Sarah12,Kanhere Nikhil13,Owrangi Amir13,Wheatley Andrew1,Coxson Harvey O.4,Santyr Giles E.12,Paterson Nigel A. M.15,McCormack David G.15,Parraga Grace123

Affiliation:

1. Imaging Research Laboratories, Robarts Research Institute, London, Ontario, Canada;

2. Department of Medical Biophysics, The University of Western Ontario, London, Ontario, Canada;

3. Graduate Program in Biomedical Engineering, The University of Western Ontario, London, Ontario, Canada;

4. Department of Radiology & James Hogg Research Centre, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada; and

5. Division of Respirology, Department of Medicine, The University of Western Ontario, London, Ontario, Canada

Abstract

In subjects with chronic obstructive pulmonary disease (COPD), hyperpolarized xenon-129 (129Xe) magnetic resonance imaging (MRI) reveals significantly greater ventilation defects than hyperpolarized helium-3 (3He) MRI. The physiological and/or morphological determinants of ventilation defects and the differences observed between hyperpolarized 3He and 129Xe MRI are not yet understood. Here we aimed to determine the structural basis for the differences in ventilation observed between 3He and 129Xe MRI in subjects with COPD using apparent diffusion coefficients (ADC) and computed tomography (CT). Ten COPD ex-smokers provided written, informed consent and underwent MRI, CT, spirometry, and plethysmography. 3He and 129Xe MRI ventilation volume was generated using semiautomated segmentation, and ADC maps were registered to generate ADC values for lung regions of interest ventilated by both gases (ADCHX) and by 3He gas only (ADCHO). CT wall area percentage and the lowest 15th percentile point of the CT lung density histogram (HU15%) were also evaluated. For lung regions accessed by 3He gas only, mean 3He ADCHO was significantly greater than for regions accessed by both gases (ADCHO = 0.503 ± 0.119 cm2/s, ADCHX = 0.470 ± 0.125 cm2/s, P < 0.0001). The difference between 3He and 129Xe ventilation volume was significantly correlated with CT HU15% ( r = −65, P = 0.04) and 3He ADCHO ( r = 0.70, P = 0.02), but not CT wall area percentage ( r = −0.34, P = 0.33). In conclusion, in this small study in COPD subjects, we observed significantly decreased 129Xe MRI ventilation compared with 3He MRI, and these regions of decreased 129Xe ventilation were spatially and significantly correlated with regions of increased pulmonary emphysema, but not airway wall thickness.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3