Gluconeogenesis and hepatic glycogenolysis during exercise at the lactate threshold

Author:

Emhoff Chi-An W.1,Messonnier Laurent A.12,Horning Michael A.1,Fattor Jill A.1,Carlson Thomas J.1,Brooks George A.1

Affiliation:

1. Department of Integrative Biology, University of California Berkeley, Berkeley, California; and

2. Department of Sport Sciences, Université de Savoie, Le Bourget du Lac, France

Abstract

Because the maintenance of glycemia is essential during prolonged exercise, we examined the effects of endurance training, exercise intensity, and plasma lactate concentration ([lactate]) on gluconeogenesis (GNG) and hepatic glycogenolysis (GLY) in fasted men exercising at, and just below, the lactate threshold (LT), where GNG precursor lactate availability is high. Twelve healthy men (6 untrained, 6 trained) completed 60 min of constant-load exercise at power outputs corresponding to their individual LT. Trained subjects completed two additional 60-min sessions of constant-load exercise: one at 10% below the LT workload (LT-10%), and the other with a lactate clamp (LT-10%+LC) to match the [lactate] of the LT trial. Flux rates were determined by primed continuous infusion of [6,6-2H2]glucose, [3-13C]lactate, and [13C]bicarbonate tracers during 90 min of rest and 60 min of cycling. Exercise at LT corresponded to 67.6 ± 1.3 and 74.8 ± 1.7% peak O2 consumption in the untrained and trained subjects, respectively ( P < 0.05). Relative exercise intensity was matched between the untrained group at LT and the trained group at LT-10%, and [lactate] during exercise was matched in the LT and LT-10%+LC trials via exogenous lactate infusion. Glucose kinetics (rate of appearance, rate of disposal, and metabolic clearance rate) were augmented with the lactate clamp. GNG was decreased in the trained subjects exercising at LT and LT-10% compared with the untrained subjects, but increasing [lactate] in the LT-10%+LC trial significantly increased GNG (4.4 ± 0.9 mg·kg−1·min−1) compared with its corresponding control (1.7 ± 0.4 mg·kg−1·min−1, P < 0.05). Hepatic GLY was higher in the trained than untrained subjects, but not significantly different across conditions. We conclude that GNG plays an essential role in maintaining total glucose production during exercise in fasted men, regardless of training state. However, endurance training increases the ability to achieve a higher relative exercise intensity and absolute power output at the LT without a significant decrease in GNG. Furthermore, raising systemic precursor substrate availability increases GNG during exercise, but not at rest.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 89 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3