Rho kinase activation and ROS production contributes to the cooling enhanced contraction in cutaneous equine digital veins

Author:

Zerpa H.1,Berhane Y.1,Woodcock H.1,Elliott J.1,Bailey S. R.2

Affiliation:

1. Department of Veterinary Basic Sciences, Royal Veterinary College, University of London, London, United Kingdom;

2. Faculty of Veterinary Science, University of Melbourne, Parkville, Victoria, Australia

Abstract

A decrease in environmental temperature can directly affect the contractility of cutaneous vasculature, mediated in part by α2-adrenoceptors. Most of the cellular mechanisms underlying the cooling-enhanced contractility to α2-adrenoceptor agonists have been reported in cutaneous arteries but little information is available on cutaneous veins. To investigate the cellular mechanisms associated with the cooling-enhanced contraction to UK-14304 (α2-adrenoceptor agonist), isolated equine digital veins (EDVs) were studied at 30°C and 22°C. The effects of inhibitors were studied on the contractile response to UK-14304 (0.1 μM). The cooling-enhanced responses were inhibited by Rho kinase inhibitors [maximum response to UK-14304 95.2 ± 8% of response to depolarizing Krebs solution (DKS) in control vessels cooled to 22°C, compared with 31.4 ± 6% in the presence of fasudil 1 μM and 75.8 ± 6% with Y-27632 0.1 μM] and the effects of these inhibitors were considerably less at 30°C (control response 56.4 ± 5% of DKS; 34.9 ± 6% with fasudil 1 μM and 50.6 ± 9% with Y-27632 0.1 μM). Furthermore, Western blotting showed that one of the downstream targets for Rho kinase activity, ezrin/radixin/moesin, was phosphorylated after cooling and reduced by fasudil (1 μM) only at 22°C. The activation of protein kinase C contributed to the contractile response, but predominantly at 30°C (maximum response 82.3 ± 9% of DKS for control; 57.7 ± 10% in the presence of chelerythrine 10 μM) with no significant effect at 22°C. The reduction of the response at 22°C by antioxidants, rotenone (14% reduction), and tempol (21% reduction) suggested the contribution of reactive oxygen species (ROS). No evidence was obtained to support the participation of tyrosine kinase. These data demonstrate that Rho kinase activation and the production of ROS contributes to the cooling-enhanced contraction in these cutaneous digital veins.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3