Glia modulation of the extracellular milieu as a factor in central CO2 chemosensitivity and respiratory control

Author:

Erlichman Joseph S.1,Leiter J. C.2

Affiliation:

1. Department of Biology, St. Lawrence University, Canton, New York; and

2. Department of Physiology, Dartmouth Medical School, Lebanon, New Hampshire

Abstract

We discuss the influence of astrocytes on respiratory function, particularly central CO2 chemosensitivity. Fluorocitrate (FC) poisons astrocytes, and studies in intact animals using FC provide strong evidence that disrupting astrocytic function can influence CO2 chemosensitivity and ventilation. Gap junctions interconnect astrocytes and contribute to K+ homeostasis in the extracellular fluid (ECF). Blocking gap junctions alters respiratory control, but proof that this is truly an astrocytic effect is lacking. Intracellular pH regulation of astrocytes has reciprocal effects on extracellular pH. Electrogenic sodium-bicarbonate transport (NBCe) is present in astrocytes. The activity of NBCe alkalinizes intracellular pH and acidifies extracellular pH when activated by depolarization (and a subset of astrocytes are depolarized by hypercapnia). Thus, to the extent that astrocytic intracellular pH regulation during hypercapnia lowers extracellular pH, astrocytes will amplify the hypercapnic stimulus and may influence central chemosensitivity. However, the data so far provide only inferential support for this hypothesis. A lactate shuttle from astrocytes to neurons seems to be active in the retrotrapezoid nucleus (RTN) and important in setting the chemosensory stimulus in the RTN (and possibly other chemosensory nuclei). Thus astrocytic processes, so vital in controlling the constituents of the ECF in the central nervous system, may profoundly influence central CO2 chemosensitivity and respiratory control.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3