Affiliation:
1. College of Pharmacy, The Ohio State University, Columbus, Ohio; and
2. Department of Physiology and Cell Biology and the Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
Abstract
The risk of sudden cardiac death is increased following myocardial infarction. Exercise training reduces arrhythmia susceptibility, but the mechanism is unknown. We used a canine model of sudden cardiac death (healed infarction, with ventricular tachyarrhythmias induced by an exercise plus ischemia test, VF+); we previously reported that endurance exercise training was antiarrhythmic in this model (Billman GE. Am J Physiol Heart Circ Physiol 297: H1171–H1193, 2009). A total of 41 VF+ animals were studied, after random assignment to 10 wk of endurance exercise training (EET; n = 21) or a matched sedentary period ( n = 20). Following (>1 wk) the final attempted arrhythmia induction, isolated myocytes were used to test the hypotheses that the endurance exercise-induced antiarrhythmic effects resulted from normalization of cellular electrophysiology and/or normalization of calcium handling. EET prevented VF and shortened in vivo repolarization ( P < 0.05). EET normalized action potential duration and variability compared with the sedentary group. EET resulted in a further decrement in transient outward current compared with the sedentary VF+ group ( P < 0.05). Sedentary VF+ dogs had a significant reduction in repolarizing K+ current, which was restored by exercise training ( P < 0.05). Compared with controls, myocytes from the sedentary VF+ group displayed calcium alternans, increased calcium spark frequency, and increased phosphorylation of S2814 on ryanodine receptor 2. These abnormalities in intracellular calcium handling were attenuated by exercise training ( P < 0.05). Exercise training prevented ischemically induced VF, in association with a combination of beneficial effects on cellular electrophysiology and calcium handling.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献