Endurance exercise training normalizes repolarization and calcium-handling abnormalities, preventing ventricular fibrillation in a model of sudden cardiac death

Author:

Bonilla Ingrid M.1,Belevych Andriy E.2,Sridhar Arun1,Nishijima Yoshinori1,Ho Hsiang-Ting2,He Quanhua1,Kukielka Monica2,Terentyev Dmitry2,Terentyeva Radmila2,Liu Bin2,Long Victor P.1,Györke Sandor2,Carnes Cynthia A.12,Billman George E.2

Affiliation:

1. College of Pharmacy, The Ohio State University, Columbus, Ohio; and

2. Department of Physiology and Cell Biology and the Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio

Abstract

The risk of sudden cardiac death is increased following myocardial infarction. Exercise training reduces arrhythmia susceptibility, but the mechanism is unknown. We used a canine model of sudden cardiac death (healed infarction, with ventricular tachyarrhythmias induced by an exercise plus ischemia test, VF+); we previously reported that endurance exercise training was antiarrhythmic in this model (Billman GE. Am J Physiol Heart Circ Physiol 297: H1171–H1193, 2009). A total of 41 VF+ animals were studied, after random assignment to 10 wk of endurance exercise training (EET; n = 21) or a matched sedentary period ( n = 20). Following (>1 wk) the final attempted arrhythmia induction, isolated myocytes were used to test the hypotheses that the endurance exercise-induced antiarrhythmic effects resulted from normalization of cellular electrophysiology and/or normalization of calcium handling. EET prevented VF and shortened in vivo repolarization ( P < 0.05). EET normalized action potential duration and variability compared with the sedentary group. EET resulted in a further decrement in transient outward current compared with the sedentary VF+ group ( P < 0.05). Sedentary VF+ dogs had a significant reduction in repolarizing K+ current, which was restored by exercise training ( P < 0.05). Compared with controls, myocytes from the sedentary VF+ group displayed calcium alternans, increased calcium spark frequency, and increased phosphorylation of S2814 on ryanodine receptor 2. These abnormalities in intracellular calcium handling were attenuated by exercise training ( P < 0.05). Exercise training prevented ischemically induced VF, in association with a combination of beneficial effects on cellular electrophysiology and calcium handling.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3