Time-dependent Effects of Moderate- and High-intensity Exercises on Myocardial Transcriptomics

Author:

Li Shunchang1,Ma Jiacheng1,Pang Xiaoli1,Liang Yu1,Li Xiaole1,Wang Manda1,Yuan Jinghan1,Pan Yanrong1,Fu Yu1,Laher Ismail2

Affiliation:

1. Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China

2. Anesthesiology, Pharmacology and Therapeutics, The University of British Columbia, Vancouver, Canada

Abstract

AbstractThe heart is a highly adaptable organ that responds to changes in functional requirements due to exposure to internal and external stimuli. Physical exercise has unique stimulatory effects on the myocardium in both healthy individuals and those with health disorders, where the effects are primarily determined by the intensity and recovery time of exercise. We investigated the time-dependent effects of different exercise intensities on myocardial transcriptional expression in rats. Moderate intensity exercise induced more differentially expressed genes in the myocardium than high intensity exercise, while 16 differentially expressed genes were down-regulated by moderate intensity exercise but up-regulated by high intensity exercise at 12 h post- exercise. Both Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis indicated that moderate intensity exercise specifically regulated gene expression related to heart adaptation, energy metabolism, and oxidative stress, while high intensity exercise specifically regulated gene expression related to immunity, inflammation, and apoptosis. Moreover, there was increased expression of Tbx5, Casq1, Igsf1, and Ddah1 at all time points after moderate intensity exercise, while there was increased expression of Card9 at all time points after high intensity exercise. Our study provides a better understanding of the intensity dependent effects of physical exercise of the molecular mechanisms of cardiac adaptation to physical exercise.

Funder

National Natural Science Foundation of China

Publisher

Georg Thieme Verlag KG

Subject

Orthopedics and Sports Medicine,Physical Therapy, Sports Therapy and Rehabilitation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3