Physical exercise decreases neuronal activity in the posterior hypothalamic area of spontaneously hypertensive rats

Author:

Beatty Joseph A.,Kramer Jeffery M.,Plowey Edward D.,Waldrop Tony G.

Abstract

Recently, physical exercise has been shown to significantly alter neurochemistry and neuronal function and to increase neurogenesis in discrete brain regions. Although we have documented that physical exercise leads to molecular changes in the posterior hypothalamic area (PHA), the impact on neuronal activity is unknown. The purpose of the present study was to determine whether neuronal activity in the PHA is altered by physical exercise. Spontaneously hypertensive rats (SHR) were allowed free access to running wheels for a period of 10 wk (exercised group) or no wheel access at all (nonexercised group). Single-unit extracellular recordings were made in anesthetized in vivo whole animal preparations or in vitro brain slice preparations. The spontaneous firing rates of PHA neurons in exercised SHR in vivo were significantly lower (8.5 ± 1.6 Hz, n = 31 neurons) compared with that of nonexercised SHR in vivo (13.7 ± 1.8 Hz, n = 38 neurons; P < 0.05). In addition, PHA neurons that possessed a cardiac-related rhythm in exercised SHR fired significantly lower (6.0 ± 1.8 Hz, n = 11 neurons) compared with nonexercised SHR (12.1 ± 2.4 Hz, n = 18 neurons; P < 0.05). Similarly, the spontaneous in vitro firing rates of PHA neurons from exercised SHR were significantly lower (3.5 ± 0.3 Hz, n = 67 neurons) compared with those of nonexercised SHR (5.6 ± 0.5 Hz, n = 58 neurons; P < 0.001). Both the in vivo and in vitro findings support the hypothesis that physical exercise can lower spontaneous activity of neurons in a cardiovascular regulatory region of the brain. Thus physical exercise may alter central neural control of cardiovascular function by inducing lasting changes in neuronal activity.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3