Descending projections of hypothalamic neurons with sympathetic nerve-related activity

Author:

Barman S. M.1

Affiliation:

1. Department of Pharmacology and Toxicology, Michigan State University,East Lansing 48824.

Abstract

1. Spike-triggered averaging was used to identify 104 hypothalamic (HYP) neurons whose spontaneous or L-glutamate-induced action potentials were synchronized to inferior cardiac postganglionic-sympathetic nerve discharge (SND) in 39 pentobarbital sodium-anesthetized cats. Neurons were located primarily in the lateral hypothalamus but also in the posterior, dorsal, ventromedial, and anterior hypothalamus, as well as in the paraventricular region. Most neurons tested (41/60) were classified as sympathoexcitatory (SE) because their firing rate decreased during baroreceptor reflex activation. Because the firing rate of 15 neurons increased during the pressor response produced by aortic obstruction, they were classified as sympathoinhibitory (SI). The firing rate of the other four neurons tested was unaffected by baroreceptor reflex activation. 2. Microstimulation of the medullary lateral tegmental field (LTF; stereotaxic plane P10.5-P12, 2.3-3 mm lateral to the midline) antidromically activated 11 of 58 HYP neurons with sympathetic nerve-related activity, including seven SE neurons and one SI neuron. Antidromic mapping was used to trace the axonal trajectories of HYP neurons that were activated by LTF microstimulation. The results of these experiments suggested that the axons of eight of these neurons branched or terminated in the LTF. The data obtained from another series of experiments were consistent with the view that these HYP neurons excited LTF-SE neurons. LTF-SE neurons were synaptically activated by electrical stimulation of the posterior or lateral hypothalamus. This stimulus also increased SND. The modal onset latency (36 +/- 7.2 ms, mean +/- SE) of synaptic activation of LTF-SE neurons was similar to the onset latency (38 +/- 6.8 ms) of antidromic activation of HYP neurons by LTF microstimulation. These data support the view that LTF-SE neurons are involved in mediating HYP influences on SND. 3. Rostral ventrolateral medullary (RVLM)-SE neurons, including those whose axons projected to the thoracic intermediolateral nucleus (IML), also appear to be involved in mediating HYP-stimulus-induced increases in SND. HYP stimulation synaptically activated these neurons with a modal onset latency of 36 +/- 9.6 ms. Microstimulation of the region containing RVLM-SE neurons antidromically activated 16 of 60 HYP neurons with sympathetic nerve-related activity. The nine neurons tested were classified as SE. antidromic mapping revealed that RVLM microstimulation activated the main axon rather than an axonal branch or terminal of 9 of 12 of these HYP neurons. 4. Microstimulation of the mesencephalic periaqueductal gray (PAG) at stereotaxic planes A2-A3.5 antidromically activated 30 of 61 HYP neurons with sympathetic nerve-related activity, including 13 SE neurons and three SI neurons.(ABSTRACT TRUNCATED AT 400 WORDS)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3