Author:
Nawab S. Hamid,Wotiz Robert P.,De Luca Carlo J.
Abstract
Decomposition of indwelling electromyographic (EMG) signals is challenging in view of the complex and often unpredictable behaviors and interactions of the action potential trains of different motor units that constitute the indwelling EMG signal. These phenomena create a myriad of problem situations that a decomposition technique needs to address to attain completeness and accuracy levels required for various scientific and clinical applications. Starting with the maximum a posteriori probability classifier adapted from the original precision decomposition system (PD I) of LeFever and De Luca ( 25 , 26 ), an artificial intelligence approach has been used to develop a multiclassifier system (PD II) for addressing some of the experimentally identified problem situations. On a database of indwelling EMG signals reflecting such conditions, the fully automatic PD II system is found to achieve a decomposition accuracy of 86.0% despite the fact that its results include low-amplitude action potential trains that are not decomposable at all via systems such as PD I. Accuracy was established by comparing the decompositions of indwelling EMG signals obtained from two sensors. At the end of the automatic PD II decomposition procedure, the accuracy may be enhanced to nearly 100% via an interactive editor, a particularly significant fact for the previously indecomposable trains.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
65 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献