Hand Dominance and Motor Unit Firing Behavior

Author:

Adam Alexander12,Luca Carlo J. De123,Erim Zeynep1

Affiliation:

1. NeuroMuscular Research Center,

2. Department of Biomedical Engineering, and

3. Department of Neurology, Boston University, Boston, Massachusetts 02215

Abstract

Adam, Alexander, Carlo J. De Luca, and Zeynep Erim. Hand dominance and motor unit firing behavior. J. Neurophysiol. 80: 1373–1382, 1998. Daily preferential use was shown to alter physiological and mechanical properties of skeletal muscle. This study was aimed at revealing differences in the control strategy of muscle pairs in humans who show a clear preference for one hand. We compared the motor unit (MU) recruitment and firing behavior in the first dorsal interosseous (FDI) muscle of both hands in eight male volunteers whose hand preference was evaluated with the use of a standard questionnaire. Myoelectric signals were recorded while subjects isometrically abducted the index finger at 30% of the maximal voluntary contraction (MVC) force. A myoelectric signal decomposition technique was used to accurately identify MU firing times from the myoelectric signal. In MUs of the dominant hand, mean values for recruitment threshold, initial firing rate, average firing rate at target force, and discharge variability were lower when compared with the nondominant hand. Analysis of the cross-correlation between mean firing rate and muscle force revealed cross-correlation peaks of longer latency in the dominant hand than in the nondominant side. This lag of the force output with respect to fluctuations in the firing behavior of MUs is indicative of a greater mechanical delay in the dominant FDI muscle. MVC force was not significantly different across muscle pairs, but the variability of force at the submaximal target level was higher in the nondominant side. The presence of lower average firing rates, lower recruitment thresholds, and greater firing rate/force delay in the dominant hand is consistent with the notion of an increased percentage of slow twitch fibers in the preferentially used muscle, allowing twitch fusion and force buildup to occur at lower firing rates. It is suggested that a lifetime of preferred use may cause adaptations in the fiber composition of the dominant muscle such that the mechanical effectiveness of its MUs increased.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3