Elevated extracellular potassium prior to muscle contraction reduces onset and steady-state exercise hyperemia in humans

Author:

Terwoord Janée D.1,Hearon Christopher M.12,Luckasen Gary J.3,Richards Jennifer C.1,Joyner Michael J.4,Dinenno Frank A.1

Affiliation:

1. Human Cardiovascular Physiology Laboratory, Department of Health and Exercise Science, Colorado State University, Fort Collins, Colorado

2. Institute for Exercise and Environmental Medicine, University of Texas Southwestern Medical Center, Dallas, Texas

3. Medical Center of the Rockies Foundation, University of Colorado Health, Loveland, Colorado

4. Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota

Abstract

The increase in interstitial potassium (K+) during muscle contractions is thought to be a vasodilatory signal that contributes to exercise hyperemia. To determine the role of extracellular K+ in exercise hyperemia, we perfused skeletal muscle with K+ before contractions, such that the effect of any endogenously-released K+ would be minimized. We tested the hypothesis that local, intra-arterial infusion of potassium chloride (KCl) at rest would impair vasodilation in response to subsequent rhythmic handgrip exercise in humans. In 11 young adults, we determined forearm blood flow (FBF) (Doppler ultrasound) and forearm vascular conductance (FVC) (FBF/mean arterial pressure) during 4 min of rhythmic handgrip exercise at 10% of maximal voluntary contraction during 1) control conditions, 2) infusion of KCl before the initiation of exercise, and 3) infusion of sodium nitroprusside (SNP) as a control vasodilator. Infusion of KCl or SNP elevated resting FVC similarly before the onset of exercise (control: 39 ± 6 vs. KCl: 81 ± 12 and SNP: 82 ± 13 ml·min−1·100 mmHg−1; both P < 0.05 vs. control). Infusion of KCl at rest diminished the hyperemic (ΔFBF) and vasodilatory (ΔFVC) response to subsequent exercise by 22 ± 5% and 30 ± 5%, respectively (both P < 0.05 vs. control), whereas SNP did not affect the change in FBF ( P = 0.74 vs. control) or FVC ( P = 0.61 vs. control) from rest to steady-state exercise. These findings implicate the K+ ion as an essential vasodilator substance contributing to exercise hyperemia in humans. NEW & NOTEWORTHY Our findings support a significant and obligatory role for potassium signaling in the local vasodilatory and hyperemic response to exercise in humans.

Funder

HHS | National Institutes of Health (NIH)

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3