Adaptations in human neuromuscular function following prolonged unweighting: II. Neurological properties and motor imagery efficacy

Author:

Clark Brian C.,Manini Todd M.,Bolanowski Stanley J.,Ploutz-Snyder Lori L.

Abstract

Strength loss following disuse may result from alterations in muscle and/or neurological properties. In this paper, we report our findings on human plantar flexor neurological properties following 4 wk of limb suspension [unilateral lower limb suspension (ULLS)], along with the effect of motor imagery (MI) training on these properties. In the companion paper (Part I), we report our findings on the changes in skeletal muscle properties. Additionally, in the present paper, we analyze our findings to determine the relative contribution of neural and muscular factors in strength loss. Measurements of central activation, the H-reflex, and nerve conduction were made before and after 4 wk of ULLS ( n = 18; 19–28 yr). A subset of the subjects ( n = 6) performed PF MI training 4 days/wk. Following ULLS, we observed a significant increase in the soleus H-reflex (45.4 ± 4.0 to 51.9 ± 3.7% expressed relative to the maximal muscle action potential). Additionally, there were longer intervals between the delivery of an electrical stimulus to the tibial nerve and the corresponding muscle action potential (M-wave latency; mean prolongation 0.49 ms) and H-reflex wave (H-wave latency; mean prolongation 0.46 ms). The efficacy of MI on strength was ambiguous, with no significant effect detected (although a modest effect size was observed; η2= 0.18). These findings suggest that unweighting induces plastic changes in neural function that appear to be spatially distributed throughout the nervous system. In terms of the relative contribution of neural and muscular factors regulating strength loss, we observed that neural factors (primarily deficits in central activation) explained 48% of the variability in strength loss, whereas muscular factors (primarily sarcolemma function) explained 39% of the variability.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3