Author:
Troyer André De,Leduc Dimitri
Abstract
The inspiratory intercostal muscles elevate the ribs and thereby elicit a fall in pleural pressure (ΔPpl) when they contract. In the present study, we initially tested the hypothesis that this ΔPpl does, in turn, oppose the rib elevation. The cranial rib displacement (Xr) produced by selective activation of the parasternal intercostal muscle in the fourth interspace was measured in dogs, first with the rib cage intact and then after ΔPpl was eliminated by bilateral pneumothorax. For a given parasternal contraction, Xr was greater after pneumothorax; the increase in Xr per unit decrease in ΔPpl was 0.98 ± 0.11 mm/cmH2O. Because this relation was similar to that obtained during isolated diaphragmatic contraction, we subsequently tested the hypothesis that the increase in Xr observed during breathing after diaphragmatic paralysis was, in part, the result of the decrease in ΔPpl, and the contribution of the difference in ΔPpl to the difference in Xr was determined by using the relation between Xr and ΔPpl during passive inflation. With diaphragmatic paralysis, Xr during inspiration increased approximately threefold, and 47 ± 8% of this increase was accounted for by the decrease in ΔPpl. These observations indicate that 1) ΔPpl is a primary determinant of rib motion during intercostal muscle contraction and 2) the decrease in ΔPpl and the increase in intercostal muscle activity contribute equally to the increase in inspiratory cranial displacement of the ribs after diaphragm paralysis.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献