Diaphragm muscle function following midcervical contusion injury in rats

Author:

Khurram Obaid U.1,Fogarty Matthew J.12,Rana Sabhya3ORCID,Vang Pangdra1,Sieck Gary C.14,Mantilla Carlos B.14

Affiliation:

1. Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota

2. School of Biomedical Sciences, The University of Queensland, St. Lucia, QLD, Australia

3. Department of Neurobiology of Disease, Mayo Clinic, Rochester, Minnesota

4. Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota

Abstract

Midcervical spinal cord contusion injury results in tissue damage, disruption of spinal pathways, and motor neuron loss. Unilateral C4 contusion results in loss of 40%–50% of phrenic motor neurons ipsilateral to the injury (~25% of the total phrenic motor neuron pool). Over time after unilateral C4 contusion injury, diaphragm muscle (DIAm) electromyogram activity increases both contralateral and ipsilateral to the side of injury in rats, suggesting compensation because of increased activation of the surviving motor neurons. However, the impact of contusion injury on DIAm force generation is less clear. Transdiaphragmatic pressure (Pdi) was measured across motor behaviors over time after unilateral C4 contusion injury in adult male Sprague-Dawley rats. Maximum Pdi (Pdimax) was elicited by bilateral phrenic nerve stimulation at 7 days postinjury. We hypothesized that Pdimax is reduced following unilateral C4 contusion injury, whereas ventilatory behaviors of the DIAm are unimpaired. In support of our hypothesis, Pdimax was reduced by ~25% after unilateral C4 contusion, consistent with the extent of phrenic motor neuron loss following contusion injury. One day after contusion injury, the Pdi amplitude during airway occlusion was reduced from ~30 to ~20 cmH2O, but this reduction was completely reversed by 7 days postinjury. Ventilatory behaviors (~10 cmH2O), DIAm-specific force, and muscle fiber cross-sectional area did not differ between the laminectomy and contusion groups. These results indicate that the large reserve capacity for DIAm force generation allows for higher-force motor behaviors to be accomplished despite motor neuron loss, likely reflecting changes in motor unit recruitment. NEW & NOTEWORTHY Respiratory muscles such as the diaphragm generate the pressures necessary to accomplish a variety of motor behaviors ranging from ventilation to near-maximal expulsive behaviors. However, the impact of contusion injury on diaphragm pressure generation across behaviors is not clear. The present study shows that contusion injury impairs maximal pressure generation while preserving the ability of the diaphragm to accomplish lower-force motor behaviors, likely reflecting changes in diaphragm motor unit recruitment.

Funder

Foundation for the National Institutes of Health (FNIH)

Department of Health, Australian Government | National Health and Medical Research Council (NHMRC)

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3