Affiliation:
1. School of Kinesiology and Health Science,
2. Department of Biology, and
3. the Muscle Health Research Centre, York University, Toronto, Ontario, Canada
Abstract
Sirt1 is a NAD+-dependent histone deacetylase that interacts with the regulatory protein of mitochondrial biogenesis PGC-1α and is sensitive to metabolic alterations. We assessed whether a strict relationship between the expression of Sirt1, mitochondrial proteins, and PGC-1α existed across tissues possessing a wide range of oxidative capabilities, as well as in skeletal muscle subject to chronic use (voluntary wheel running or electrical stimulation for 7 days, 10 Hz; 3 h/day) or disuse (denervation for up to 21 days) in which organelle biogenesis is altered. PGC-1α levels were not closely associated with the expression of Sirt1, measured using immunoblotting or via enzymatic deacetylase activity. The mitochondrial protein cytochrome c increased by 70–90% in soleus and plantaris muscles of running animals, whereas Sirt1 activity remained unchanged. In chronically stimulated muscle, cytochrome c was increased by 30% compared with nonstimulated muscle, whereas Sirt1 activity was increased modestly by 20–25%. In contrast, in denervated muscle, these markers of mitochondrial content were decreased by 30–50% compared with the control muscle, whereas Sirt1 activity was increased by 75–80%. Our data suggest that Sirt1 and PGC-1α expression are independently regulated and that, although Sirt1 activity may be involved in mitochondrial biogenesis, its expression is not closely correlated to changes in mitochondrial proteins during conditions of chronic muscle use and disuse.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
56 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献