Skeletal Muscle Gene Expression Profile in Response to Caloric Restriction and Aging: A Role for SirT1

Author:

Myers Matthew J.ORCID,Shaik Fathima,Shaik Fahema,Alway Stephen E.,Mohamed Junaith S.ORCID

Abstract

SirT1 plays a crucial role in the regulation of some of the caloric restriction (CR) responsive biological pathways. Aging suppresses SirT1 gene expression in skeletal muscle, suggesting that aging may affect the role of CR in muscle. To determine the role of SirT1 in the regulation of CR regulated pathways in skeletal muscle, we performed high-throughput RNA sequencing using total RNA isolated from the skeletal muscles of young and aged wild-type (WT), SirT1 knockout (SirT1-KO), and SirT1 overexpression (SirT1-OE) mice fed to 20 wk ad libitum (AL) or 40% CR diet. Our data show that aging repressed the global gene expression profile, which was restored by CR via upregulating transcriptional and translational process-related pathways. CR inhibits pathways linked to the extracellular matrix and cytoskeletal proteins regardless of aging. Mitochondrial function and muscle contraction-related pathways are upregulated in aged SirT1 KO mice following CR. SirT1 OE did not affect whole-body energy expenditure or augment skeletal muscle insulin sensitivity associated pathways, regardless of aging or diet. Overall, our RNA-seq data showed that SirT1 and CR have different functions and activation of SirT1 by its activator or exercise may enhance SirT1 activity that, along with CR, likely have a better functional role in aging muscle.

Publisher

MDPI AG

Subject

Genetics (clinical),Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3