Human diaphragm efficiency estimated as power output relative to activation increases with hypercapnic hyperpnea

Author:

Finucane Kevin E.1,Singh Bhajan1

Affiliation:

1. Department of Pulmonary Physiology, Sir Charles Gairdner Hospital, Nedlands; and West Australian Sleep Disorders Research Institute, Queen Elizabeth II Medical Centre, Perth, Western Australia, Australia

Abstract

Hyperpnea with exercise or hypercapnia causes phasic contraction of abdominal muscles, potentially lengthening the diaphragm at end expiration and unloading it during inspiration. Muscle efficiency in vitro varies with load, fiber length, and precontraction stretch. To examine whether these properties of muscle contractility determine diaphragm efficiency (Effdi) in vivo, we measured Effdiin six healthy adults breathing air and during progressive hypercapnia at three levels of end-tidal Pco2with mean values of 48 (SD 2), 55 (SD 2), and 61 (SD 1) Torr. Effdiwas estimated as the ratio of diaphragm power (W˙di) [the product of mean inspiratory transdiaphragmatic pressure, diaphragm volume change (ΔVdi) measured fluoroscopically, and 1/inspiratory duration (Ti−1)] to activation [root mean square values of inspiratory diaphragm electromyogram (RMSdi) measured from esophageal electrodes]. At maximum hypercapnea relative to breathing air, 1) gastric pressure and diaphragm length at end expiration (Pgeeand Ldiee, respectively) increased 1.4 (SD 0.2) and 1.13 (SD 0.08) times, ( P < 0.01 for both); 2) inspiratory change (Δ) in Pg decreased from 4.5 (SD 2.2) to −7.7 (SD 3.8) cmH2O ( P < 0.001); 3) ΔVdi·Ti−1, W˙di, RMSdi, and Effdiincreased 2.7 (SD 0.6), 4.9 (SD 1.8), 2.6 (SD 0.9), and 1.8 (SD 0.3) times, respectively ( P < 0.01 for all); and 4) net and inspiratory W˙di were not different ( P = 0.4). Effdiwas predicted from Ldiee( P < 0.001), Pgee( P < 0.001), ΔPg·Ti−1( P = 0.03), and ΔPg ( P = 0.04) ( r2= 0.52) (multivariate regression analysis). We conclude that, with hypercapnic hyperpnea, 1) ∼47% of the maximum increase of W˙di was attributable to increased Effdi; 2) Effdiincreased due to preinspiratory lengthening and inspiratory unloading of the diaphragm, consistent with muscle behavior in vitro; 3) passive recoil of the diaphragm did not contribute to inspiratory W˙di or Effdi; and 4) phasic abdominal muscle activity with hyperpnea reduces diaphragm energy consumption.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3