Diving deep: understanding the genetic components of hypoxia tolerance in marine mammals

Author:

Hindle Allyson G.1

Affiliation:

1. School of Life Sciences, University of Nevada, Las Vegas, Nevada

Abstract

Marine mammals have highly specialized physiology, exhibited in many species by extreme breath-holding capabilities that allow deep dives and extended submergence. Cardiovascular control and cell-level hypoxia tolerance are key features of this phenotype. Identifying genomic signatures tied to physiology will be valuable in understanding these natural model species, which may generate translational opportunities to human diseases arising from hypoxic stress or tissue injury. Genomic analyses have now been conducted in dolphins, river dolphins, minke whales, bowhead whales, and polar bears, with multispecies studies exploring evolutionary signals across marine mammal lineages, encompassing extinct and extant divers. Single-species genome studies for sirenians do not yet exist. Extant marine mammals arose in three lineages from separate aquatic recolonizations. Their physiological specializations, along with these independent origins create an interesting case to examine convergent evolution. Although molecular mechanisms of hypoxia tolerance are not universally apparent across marine mammal genomic studies, altered evolutionary rates have been identified for genes linked to oxygen binding and transport (e.g., MB, HBA, and HBB), blood pressure control (e.g., endothelin pathway genes), and cell protection in multiple species. Despite convergent phenotypes across clades, instances of identical molecular convergence have been uncommon. Given the inherent logistical and regulatory difficulties associated with functional genetic experiments in marine mammals, several avenues of further investigation are suggested to enable validation of candidate genes for hypoxia tolerance: leveraging phylogeny to better understand convergent phenotypes; ontogenic studies to identify regulation of key genes underlying the elite, adult, hypoxia-tolerant physiology; and cell culture manipulations to understand gene function.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3