Genetic determination of the vascular reactions in humans in response to the diving reflex

Author:

Baranova Tatiana I.1,Berlov Dmitrii N.12,Glotov Oleg S.3,Korf Ekaterina A.1,Minigalin Alexey D.1,Mitrofanova Alla V.4,Ahmetov Ildus I.5,Glotov Andrey S.3

Affiliation:

1. Department of General Physiology, Saint Petersburg State University, Saint Petersburg, Russia;

2. ITMO University, Saint Petersburg, Russia

3. Biobank of the Research Park, Saint Petersburg State University, Saint Petersburg, Russia;

4. Katz Drug Discovery Center and Department of Surgery, Miller School of Medicine, University of Miami, Miami, Florida;

5. Ildus I. Ahmetov Sport Technology Research Center, Volga Region State Academy of Physical Culture, Sport and Tourism, Kazan, Russia; and

Abstract

The purpose of this study was to investigate the genetic mechanisms of the defense vascular reactions in response to the diving reflex in humans with polymorphisms in the genes ADBR2, ACE, AGTR1, BDKRB2, and REN. We hypothesized that protective vascular reactions, in response to the diving reflex, are genetically determined and are distinguished in humans with gene polymorphisms of the renin-angiotensin and kinin-bradykinin system. A total of 80 subjects (19 ± 1.4 yr) participated in the study. The intensity of the vascular response was estimated using photoplethysmogram. The I/D polymorphism (rs4340) of ACE was analyzed by PCR. REN (G/A, rs2368564), AGTR1 (A/C, rs5186), BDKRB2 (T/C, rs1799722), and ADBR2 (A/G, rs1042713) polymorphisms were examined using the two-step multiplex PCR followed by carrying allele hybridization on the biochip. Subjects with the BDKRB2 (C/C), ACE (D/D), and ADBR2 (G/G, G/A) genotypes exhibited the strongest peripheral vasoconstriction in response to diving. In subjects with a combination of the BDKRB2 (C/C) plus ACE (D/D) genotypes, we observed the lowest pulse wave amplitude and pulse transit time values and the highest arterial blood pressure during face immersion compared with the heterozygous individuals, suggesting that these subjects are more susceptible to diving hypoxia. This study observed that humans with gene polymorphisms of the renin-angiotensin and kinin-bradykinin systems demonstrate various expressions of protective vascular reactions in response to the diving reflex. The obtained results might be used in estimation of resistance to hypoxia of any origin in human beings or in a medical practice. NEW & NOTEWORTHY Our study demonstrates that the vascular reactions in response to the diving reflex are genetically determined and depend on gene polymorphisms of the kinin-bradykinin and the renin-angiotensin systems.

Funder

Russian Science Foundation

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3