Quantitative imaging of alveolar recruitment with hyperpolarized gas MRI during mechanical ventilation

Author:

Cereda Maurizio1,Emami Kiarash2,Kadlecek Stephen2,Xin Yi2,Mongkolwisetwara Puttisarn2,Profka Harrilla2,Barulic Amy2,Pickup Stephen2,Månsson Sven3,Wollmer Per3,Ishii Masaru4,Deutschman Clifford S.1,Rizi Rahim R.2

Affiliation:

1. Department of Anesthesiology and Critical Care and Stavropoulos Sepsis Research Program and

2. Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania;

3. Department of Clinical Sciences, Lund University, Malmö, Sweden; and

4. Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins University, Baltimore, Maryland

Abstract

The aim of this study was to assess the utility of 3He MRI to noninvasively probe the effects of positive end-expiratory pressure (PEEP) maneuvers on alveolar recruitment and atelectasis buildup in mechanically ventilated animals. Sprague-Dawley rats ( n = 13) were anesthetized, intubated, and ventilated in the supine position (4He-to-O2 ratio: 4:1; tidal volume: 10 ml/kg, 60 breaths/min, and inspiration-to-expiration ratio: 1:2). Recruitment maneuvers consisted of either a stepwise increase of PEEP to 9 cmH2O and back to zero end-expiratory pressure or alternating between these two PEEP levels. Diffusion MRI was performed to image 3He apparent diffusion coefficient (ADC) maps in the middle coronal slices of lungs ( n = 10). ADC was measured immediately before and after two recruitment maneuvers, which were separated from each other with a wait period (8–44 min). We detected a statistically significant decrease in mean ADC after each recruitment maneuver. The relative ADC change was −21.2 ± 4.1 % after the first maneuver and −9.7 ± 5.8 % after the second maneuver. A significant relative increase in mean ADC was observed over the wait period between the two recruitment maneuvers. The extent of this ADC buildup was time dependent, as it was significantly related to the duration of the wait period. The two postrecruitment ADC measurements were similar, suggesting that the lungs returned to the same state after the recruitment maneuvers were applied. No significant intrasubject differences in ADC were observed between the corresponding PEEP levels in two rats that underwent three repeat maneuvers. Airway pressure tracings were recorded in separate rats undergoing one PEEP maneuver ( n = 3) and showed a significant relative difference in peak inspiratory pressure between pre- and poststates. These observations support the hypothesis of redistribution of alveolar gas due to recruitment of collapsed alveoli in presence of atelectasis, which was also supported by the decrease in peak inspiratory pressure after recruitment maneuvers.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3