First Stabilize and then Gradually Recruit: A Paradigm Shift in Protective Mechanical Ventilation for Acute Lung Injury

Author:

Nieman Gary F.1ORCID,Kaczka David W.2ORCID,Andrews Penny L.3,Ghosh Auyon4,Al-Khalisy Hassan5,Camporota Luigi6,Satalin Joshua1ORCID,Herrmann Jacob7ORCID,Habashi Nader M.3

Affiliation:

1. Department of Surgery, Upstate Medical University, Syracuse, NY 13210, USA

2. Departments of Anesthesia, Radiology and Biomedical Engineering, University of Iowa, Iowa City, IA 52242, USA

3. Department of Medicine, R Adams Cowley Shock Trauma Center, University of Maryland Medical Center, Baltimore, MD 21201, USA

4. Department of Medicine, Upstate Medical University, Syracuse, NY 13210, USA

5. Brody School of Medicine, Department of Internal Medicine, East Carolina University, Greenville, NC 27834, USA

6. Department of Adult Critical Care, Guy’s and St Thomas’ NHS Foundation Trust, King’s Partners, St Thomas’ Hospital, London SE1 7EH, UK

7. Department of Biomedical Engineering, University of Iowa, Iowa City, IA 52242, USA

Abstract

Acute respiratory distress syndrome (ARDS) is associated with a heterogeneous pattern of injury throughout the lung parenchyma that alters regional alveolar opening and collapse time constants. Such heterogeneity leads to atelectasis and repetitive alveolar collapse and expansion (RACE). The net effect is a progressive loss of lung volume with secondary ventilator-induced lung injury (VILI). Previous concepts of ARDS pathophysiology envisioned a two-compartment system: a small amount of normally aerated lung tissue in the non-dependent regions (termed “baby lung”); and a collapsed and edematous tissue in dependent regions. Based on such compartmentalization, two protective ventilation strategies have been developed: (1) a “protective lung approach” (PLA), designed to reduce overdistension in the remaining aerated compartment using a low tidal volume; and (2) an “open lung approach” (OLA), which first attempts to open the collapsed lung tissue over a short time frame (seconds or minutes) with an initial recruitment maneuver, and then stabilize newly recruited tissue using titrated positive end-expiratory pressure (PEEP). A more recent understanding of ARDS pathophysiology identifies regional alveolar instability and collapse (i.e., hidden micro-atelectasis) in both lung compartments as a primary VILI mechanism. Based on this understanding, we propose an alternative strategy to ventilating the injured lung, which we term a “stabilize lung approach” (SLA). The SLA is designed to immediately stabilize the lung and reduce RACE while gradually reopening collapsed tissue over hours or days. At the core of SLA is time-controlled adaptive ventilation (TCAV), a method to adjust the parameters of the airway pressure release ventilation (APRV) modality. Since the acutely injured lung at any given airway pressure requires more time for alveolar recruitment and less time for alveolar collapse, SLA adjusts inspiratory and expiratory durations and inflation pressure levels. The TCAV method SLA reverses the open first and stabilize second OLA method by: (i) immediately stabilizing lung tissue using a very brief exhalation time (≤0.5 s), so that alveoli simply do not have sufficient time to collapse. The exhalation duration is personalized and adaptive to individual respiratory mechanical properties (i.e., elastic recoil); and (ii) gradually recruiting collapsed lung tissue using an inflate and brake ratchet combined with an extended inspiratory duration (4–6 s) method. Translational animal studies, clinical statistical analysis, and case reports support the use of TCAV as an efficacious lung protective strategy.

Funder

Office of the Assistant Secretary of Defense for Health Affairs

National Institutes of Health

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3