The magnitude of heat stress-induced reductions in cerebral perfusion does not predict heat stress-induced reductions in tolerance to a simulated hemorrhage

Author:

Lee Joshua F.1,Harrison Michelle L.1,Brown Skyler R.1,Brothers R. Matthew1

Affiliation:

1. Environmental and Autonomic Physiology Laboratory, Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, Texas

Abstract

The mechanisms responsible for heat stress-induced reductions in tolerance to a simulated hemorrhage are unclear. Although a high degree of variability exists in the level of reduction in tolerance amongst individuals, syncope will always occur when cerebral perfusion is inadequate. This study tested the hypothesis that the magnitude of reduction in cerebral perfusion during heat stress is related to the reduction in tolerance to a lower body negative pressure (LBNP) challenge. On different days (one during normothermia and the other after a 1.5°C rise in internal temperature), 20 individuals were exposed to a LBNP challenge to presyncope. Tolerance was quantified as a cumulative stress index, and the difference in cumulative stress index between thermal conditions was used to categorize individuals most (large difference) and least (small difference) affected by the heat stress. Cerebral perfusion, as indexed by middle cerebral artery blood velocity, was reduced during heat stress compared with normothermia ( P < 0.001); however, the magnitude of reduction did not differ between groups ( P = 0.51). In the initial stage of LBNP during heat stress (LBNP 20 mmHg), middle cerebral artery blood velocity and end-tidal Pco2 were lower; whereas, heart rate was higher in the large difference group compared with small difference group ( P < 0.05 for all). These data indicate that variability in heat stress-induced reductions in tolerance to a simulated hemorrhage is not related to reductions in cerebral perfusion in this thermal condition. However, responses affecting cerebral perfusion during LBNP may explain the interindividual variability in tolerance to a simulated hemorrhage when heat stressed.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3