Elucidation of spatially distinct compensatory mechanisms in diastole: radial compensation for impaired longitudinal filling in left ventricular hypertrophy

Author:

Riordan Matt M.,Kovács Sándor J.

Abstract

Cardiac output maintenance is so fundamental that, when regional systolic function is impaired, as during ischemia, nonischemic segments compensate by becoming hypercontractile. By analogy, diastolic compensatory mechanisms that maintain filling volume must exist but remain to be fully elucidated. Viewing filling in spatially distinct (longitudinal, radial) mechanistic terms facilitates elucidation of diastolic compensatory mechanisms. Because impairment of longitudinal (long axis) diastolic function (DF) in left ventricular hypertrophy (LVH) is established, we hypothesized that to maintain filling volume, radial (short-axis) filling function would compensate. In 20 normal left ventricular ejection fraction (LVEF) subjects (10 with LVH, 10 without LVH), we analyzed longitudinal function via Doppler tissue imaging of mitral annular motion and radial function as change in short-axis endocardial dimension via M-mode. The spatial (long axis, short axis) endocardial LV dimensions and their changes allowed assignment of E-wave filling volume into (cylindrical geometry-based) longitudinal and radial components. Despite indistinguishable ( P = 0.70) E-wave velocity-time integrals (E-wave filling volume surrogate), systolic stroke volumes, and end-diastolic volumes in the LVH and control groups, longitudinal volume in absolute terms and the percent of E-wave volume accommodated longitudinally were reduced in the LVH group ( P < 0.05 and P < 0.01, respectively), whereas the percent of E-wave volume accommodated radially was enhanced ( P < 0.01). We conclude that, in normal LVEF (decreased longitudinal volume accommodation) LVH subjects vs. controls, spatially distinct compensatory mechanisms in diastole manifest as increased radial volume accommodation per unit of E-wave filling volume. Assessment of spatially distinct diastolic compensatory mechanisms in other pathophysiological subsets is warranted.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Systolic–diastolic coupling;Textbook of Arterial Stiffness and Pulsatile Hemodynamics in Health and Disease;2022

2. Detection of subclinical myocardial dysfunction in cocaine addicts with feature tracking cardiovascular magnetic resonance;Journal of Cardiovascular Magnetic Resonance;2020-09-28

3. What global diastolic function is, what it is not, and how to measure it;American Journal of Physiology-Heart and Circulatory Physiology;2015-11

4. Peak early diastolic mitral annulus velocity by tissue Doppler imaging for the assessment of left ventricular relaxation in subjects with mitral annulus calcification;European Heart Journal – Cardiovascular Imaging;2015-09-20

5. Diastolic Function in Heart Failure;Clinical Medicine Insights: Cardiology;2015-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3