What global diastolic function is, what it is not, and how to measure it

Author:

Chung Charles S.1ORCID,Shmuylovich Leonid2,Kovács Sándor J.2

Affiliation:

1. Department of Physiology and Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, and Department of Physiology, Wayne State University, Detroit, Michigan; and

2. Cardiovascular Biophysics Laboratory, Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri

Abstract

Despite Leonardo da Vinci's observation (circa 1511) that “the atria or filling chambers contract together while the pumping chambers or ventricles are relaxing and vice versa,” the dynamics of four-chamber heart function, and of diastolic function (DF) in particular, are not generally appreciated. We view DF from a global perspective, while characterizing it in terms of causality and clinical relevance. Our models derive from the insight that global DF is ultimately a result of forces generated by elastic recoil, modulated by cross-bridge relaxation, and load. The interaction between recoil and relaxation results in physical wall motion that generates pressure gradients that drive fluid flow, while epicardial wall motion is constrained by the pericardial sac. Traditional DF indexes (τ, E/E′, etc.) are not derived from causal mechanisms and are interpreted as approximating either stiffness or relaxation, but not both, thereby limiting the accuracy of DF quantification. Our derived kinematic models of isovolumic relaxation and suction-initiated filling are extensively validated, quantify the balance between stiffness and relaxation, and provide novel mechanistic physiological insight. For example, causality-based modeling provides load-independent indexes of DF and reveals that both stiffness and relaxation modify traditional DF indexes. The method has revealed that the in vivo left ventricular equilibrium volume occurs at diastasis, predicted novel relationships between filling and wall motion, and quantified causal relationships between ventricular and atrial function. In summary, by using governing physiological principles as a guide, we define what global DF is, what it is not, and how to measure it.

Funder

American Heart Association (AHA)

Alan A and Edith L Wolff Charitable Trust, Barnes-Jewish Hospital Foundation

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3