Functional genomics approach to hypoxia signaling

Author:

Seta Karen A.1,Millhorn David E.1

Affiliation:

1. Department of Genome Science, Genome Research Institute, University of Cincinnati, Cincinnati, Ohio 45237

Abstract

Mammalian cells require a constant supply of oxygen to maintain energy balance, and sustained hypoxia can result in cell death. It is therefore not surprising that sophisticated adaptive mechanisms have evolved that enhance cell survival during hypoxia. During the past few years, there have been a growing number of reports on hypoxia-induced transcription of specific genes. In this review, we describe a unique experimental approach that utilizes focused cDNA libraries coupled to microarray analyses to identify hypoxia-responsive signal transduction pathways and genes that confer the hypoxia-tolerant phenotype. We have used the subtractive suppression hybridization (SSH) method to create a cDNA library enriched in hypoxia-regulated genes in oxygen-sensing pheochromocytoma cells and have used this library to create microarrays that allow us to examine hundreds of genes at a time. This library contains over 300 genes and expressed sequence tags upregulated by hypoxia, including tyrosine hydroxylase, vascular endothelial growth factor, and junB. Hypoxic regulation of these and other genes in the library has been confirmed by microarray, Northern blot, and real-time PCR analyses. Coupling focused SSH libraries with microarray analyses allows one to specifically study genes relevant to a phenotype of interest while reducing much of the biological noise associated with these types of studies. When used in conjunction with high-throughput, dye-based assays for cell survival and apoptosis, this approach offers a rapid method for discovering validated therapeutic targets for the treatment of cardiovascular disease, stroke, and tumors.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3