Altered Achilles tendon function during walking in people with diabetic neuropathy: implications for metabolic energy saving

Author:

Petrovic M.1,Maganaris C. N.2,Deschamps K.3,Verschueren S. M.3,Bowling F. L.4,Boulton A. J. M.45,Reeves N. D.1

Affiliation:

1. School of Healthcare Science, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom

2. School of Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom

3. Department of Rehabilitation Sciences, Katholieke Universiteit Leuven, Leuven, Belgium

4. Faculty of Medical and Human Sciences, University of Manchester, Manchester, United Kingdom

5. Diabetes Research Institute, University of Miami, Miami, Florida

Abstract

The Achilles tendon (AT) has the capacity to store and release elastic energy during walking, contributing to metabolic energy savings. In diabetes patients, it is hypothesized that a stiffer Achilles tendon may reduce the capacity for energy saving through this mechanism, thereby contributing to an increased metabolic cost of walking (CoW). The aim of this study was to investigate the effects of diabetes and diabetic peripheral neuropathy (DPN) on the Achilles tendon and plantarflexor muscle-tendon unit behavior during walking. Twenty-three nondiabetic controls (Ctrl); 20 diabetic patients without peripheral neuropathy (DM), and 13 patients with moderate/severe DPN underwent gait analysis using a motion analysis system, force plates, and ultrasound measurements of the gastrocnemius muscle, using a muscle model to determine Achilles tendon and muscle-tendon length changes. During walking, the DM and particularly the DPN group displayed significantly less Achilles tendon elongation (Ctrl: 1.81; DM: 1.66; and DPN: 1.54 cm), higher tendon stiffness (Ctrl: 210; DM: 231; and DPN: 240 N/mm), and higher tendon hysteresis (Ctrl: 18; DM: 21; and DPN: 24%) compared with controls. The muscle fascicles of the gastrocnemius underwent very small length changes in all groups during walking (~0.43 cm), with the smallest length changes in the DPN group. Achilles tendon forces were significantly lower in the diabetes groups compared with controls (Ctrl: 2666; DM: 2609; and DPN: 2150 N). The results strongly point toward the reduced energy saving capacity of the Achilles tendon during walking in diabetes patients as an important factor contributing to the increased metabolic CoW in these patients. NEW & NOTEWORTHY From measurements taken during walking we observed that the Achilles tendon in people with diabetes and particularly people with diabetic peripheral neuropathy was stiffer, was less elongated, and was subject to lower forces compared with controls without diabetes. These altered properties of the Achilles tendon in people with diabetes reduce the tendon’s energy saving capacity and contribute toward the higher metabolic energy cost of walking in these patients.

Funder

Erasmus Mundus Joint Doctorate Program Move-Age

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3