Muscle type-specific RNA polymerase II recruitment during PGC-1α gene transcription after acute exercise in adult rats

Author:

Masuzawa Ryo1,Konno Ryotaro2,Ohsawa Ikumi2,Watanabe Atsuya1,Kawano Fuminori12

Affiliation:

1. Graduate School of Health Sciences, Matsumoto University, Matsumoto City, Japan

2. Department of Sports and Health Science, Faculty of Human Health and Science, Matsumoto University, Matsumoto City, Japan

Abstract

Epigenetic regulation of gene expression differs between fast- and slow-twitch skeletal muscles in adult rats, although the precise mechanisms are still unknown. The present study investigates the differences in responses of RNA polymerase II (Pol II) and histone acetylation during transcriptional activation in the plantaris and soleus muscles of adult rats after acute treadmill running. We targeted the peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) gene to analyze epigenomic changes by chromatin immunoprecipitation. The mRNA expression of the PGC-1α-b isoform was significantly upregulated in both plantaris and soleus muscles 2 h after acute running, although the magnitude of the upregulation was more pronounced in the plantaris muscle. The sequences of proximal exons of the PGC-1α locus were expressed more in the plantaris muscle after acute running. Accumulation of Pol II was noted near the alternative exon 1 in both plantaris and soleus muscles in association with the enhanced distribution of acetylated histone 3. Accumulation of Pol II was also observed at the transcription start site, exon 2, and exon 3 in the plantaris muscle, but not the soleus muscle. It was noted that in the soleus muscle, acetylation of histone 3 at lysine 27 was enhanced throughout the PGC-1α locus in response to transcriptional activation, suggesting that elongating Pol II was capable of traveling through to the end of the locus. These results indicate that the mobility of Pol II during PGC-1α transcription differed between fast- and slow-twitch skeletal muscles, affecting the strength of the transcriptional activity. NEW & NOTEWORTHY Fast- and slow-twitch skeletal muscles have distinct characteristics in both force production and metabolism. Epigenetic regulations also largely differ in these muscles. Here we show that RNA polymerase II is distributed extensively at the proximal regions downstream of transcription start site during the transcriptional activation of PGC-1α in fast-twitch muscles, but it accumulates at the first exon in slow-twitch muscles. These findings will provide a basis to understand type-specific mechanisms in skeletal muscle.

Funder

Japan Society for the Promotion of Science (JSPS)

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3