Intensity-controlled treadmill running in mice: cardiac and skeletal muscle hypertrophy

Author:

Kemi Ole Johan1,Loennechen Jan P.12,Wisløff Ulrik12,Ellingsen Øyvind12

Affiliation:

1. Department of Physiology and Biomedical Engineering, Norwegian University of Science and Technology, N-7489 Trondheim; and

2. Department of Cardiology, St. Olavs Hospital HF, N-7006 Trondheim, Norway

Abstract

Whereas novel pathways of pathological heart enlargement have been unveiled by thoracic aorta constriction in genetically modified mice, the molecular mechanisms of adaptive cardiac hypertrophy remain virtually unexplored and call for an effective and well-characterized model of physiological mechanical loading. Experimental procedures of maximal oxygen consumption (V˙o 2 max) and intensity-controlled treadmill running were established in 40 female and 36 male C57BL/6J mice. An inclination-dependent V˙o 2 maxwith 0.98 test-retest correlation was found at 25° treadmill grade. Running for 2 h/day, 5 days/wk, in intervals of 8 min at 85–90% of V˙o 2 max and 2 min at 50% (adjusted to weekly V˙o 2 max testing) increasedV˙o 2 max to a plateau 49% above sedentary females and 29% in males. Running economy improved in both sexes, and echocardiography indicated significantly increased left ventricle posterior wall thickness. Ventricular weights increased by 19–29 and 12–17% in females and males, respectively, whereas cardiomyocyte dimensions increased by 20–32, and 17–23% in females and males, respectively; skeletal muscle mass increased by 12–18%. Thus the model mimics human responses to exercise and can be used in future studies of molecular mechanisms underlying these adaptations.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3