Decomposition of Surface EMG Signals

Author:

De Luca Carlo J.,Adam Alexander,Wotiz Robert,Gilmore L. Donald,Nawab S. Hamid

Abstract

This report describes an early version of a technique for decomposing surface electromyographic (sEMG) signals into the constituent motor unit (MU) action potential trains. A surface sensor array is used to collect four channels of differentially amplified EMG signals. The decomposition is achieved by a set of algorithms that uses a specially developed knowledge-based Artificial Intelligence framework. In the automatic mode the accuracy ranges from 75 to 91%. An Interactive Editor is used to increase the accuracy to >97% in signal epochs of about 30-s duration. The accuracy was verified by comparing the firings of action potentials from the EMG signals detected simultaneously by the surface sensor array and by a needle sensor. We have decomposed up to six MU action potential trains from the sEMG signal detected from the orbicularis oculi, platysma, and tibialis anterior muscles. However, the yield is generally low, with typically ≤5 MUs per contraction. Both the accuracy and the yield should increase as the algorithms are developed further. With this technique it is possible to investigate the behavior of MUs in muscles that are not easily studied by needle sensors. We found that the inverse relationship between the recruitment threshold and the firing rate previously reported for muscles innervated by spinal nerves is also present in the orbicularis oculi and the platysma, which are innervated by cranial nerves. However, these two muscles were found to have greater and more widespread values of firing rates than those of large limb muscles.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Reference67 articles.

1. Recruitment Order of Motor Units in Human Vastus Lateralis Muscle Is Maintained During Fatiguing Contractions

2. Firing rates of motor units in human vastus lateralis muscle during fatiguing isometric contractions

3. Hand Dominance and Motor Unit Firing Behavior

4. Andreassen S. Computerized analysis of motor unit firing. In: Computer-Aided Electromyography, edited by Desmedt JE. Basel: Karger, 1983, p. 150–163.

5. Basmajian J and De Luca CJ. Muscles Alive (5th ed.). Baltimore, MD: Williams & Wilkins, 1985.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3