Specific serine proteases selectively damage KCNH2 (hERG1) potassium channels and IKr

Author:

Rajamani Sridharan,Anderson Corey L.,Valdivia Carmen R.,Eckhardt Lee L.,Foell Jason D.,Robertson Gail A.,Kamp Timothy J.,Makielski Jonathan C.,Anson Blake D.,January Craig T.

Abstract

KCNH2 ( hERG1) encodes the α-subunit proteins for the rapidly activating delayed rectifier K+ current ( IKr), a major K+ current for cardiac myocyte repolarization. In isolated myocytes IKr frequently is small in amplitude or absent, yet KCNH2 channels and IKr are targets for drug block or mutations to cause long QT syndrome. We hypothesized that KCNH2 channels and IKr are uniquely sensitive to enzymatic damage. To test this hypothesis, we studied heterologously expressed K+, Na+, and L-type Ca2+ channels, and in ventricular myoctyes IKr, slowly activating delayed rectifier K+ current ( IKs), and inward rectifier K+ current ( IK1), by using electrophysiological and biochemical methods. 1) Specific exogenous serine proteases (protease XIV, XXIV, or proteinase K) selectively degraded KCNH2 current ( IKCNH2) and its mature channel protein without damaging cell integrity and with minimal effects on the other channel currents; 2) immature KCNH2 channel protein remained intact; 3) smaller molecular mass KCNH2 degradation products appeared; 4) protease XXIV selectively abolished IKr; and 5) reculturing HEK-293 cells after protease exposure resulted in the gradual recovery of IKCNH2 and its mature channel protein over several hours. Thus the channel protein for IKCNH2 and IKr is uniquely sensitive to proteolysis. Analysis of the degradation products suggests selective proteolysis within the S5-pore extracellular linker, which is structurally unique among Kv channels. These data provide 1) a new mechanism to account for low IKr density in some isolated myocytes, 2) evidence that most complexly glycosylated KCNH2 channel protein is in the plasma membrane, and 3) new insight into the rate of biogenesis of KCNH2 channel protein within cells.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3