Destruction of Sodium Conductance Inactivation in Squid Axons Perfused with Pronase

Author:

Armstrong Clay M.1,Bezanilla Francisco1,Rojas Eduardo1

Affiliation:

1. From the University of Rochester, School of Medicine, Rochester, New York 14642; the Marine Biological Laboratory, Woods Hole, Massachusetts 02543; and the Laboratorio de Fisiología Celular, Montemar, Chile

Abstract

We have studied the effects of the proteolytic enzyme Pronase on the membrane currents of voltage-clamped squid axons. Internal perfusion of the axons with Pronase rather selectively destroys inactivation of the Na conductance (gNa). At the level of a single channel, Pronase probably acts in an all-or-none manner: each channel inactivates normally until its inactivation gate is destroyed, and then it no longer inactivates. Pronase reduces g¯Na, possibly by destroying some of the channels, but after removal of its inactivation gate a Na channel seems no longer vulnerable to Pronase. The turn-off kinetics and the voltage dependence of the Na channel activation gates are not affected by Pronase, and it is probable that the enzyme does not affect these gates in any way. Neither the K channels nor their activation gates are affected in a specific way by Pronase. Tetrodotoxin does not protect the inactivation gates from Pronase, nor does maintained inactivation of the Na channels during exposure to Pronase. Our results suggest that the inactivation gate is a readily accessible protein attached to the inner end of each Na channel. It is shown clearly that activation and inactivation of Na channels are separable processes, and that Na channels are distinct from K channels.

Publisher

Rockefeller University Press

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3