Estimation of the baroreflex total loop gain by the power spectral analysis of continuous arterial pressure recordings

Author:

Mannoji Hiroshi1,Saku Keita2,Nishikawa Takuya1,Tohyama Takeshi1,Kamada Kazuhiro1,Abe Kiyokazu3,Sunagawa Genya1,Kishi Takuya2,Sunagawa Kenji4,Tsutsui Hiroyuki1

Affiliation:

1. Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan

2. Department of Advanced Risk Stratification for Cardiovascular Disease, Center for Disruptive Cardiovascular Medicine, Kyushu University, Fukuoka, Japan

3. Department of Anesthesiology and Critical Care Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan

4. Department of Therapeutic Regulation of Cardiovascular Homeostasis, Center for Disruptive Cardiovascular Medicine, Kyushu University, Fukuoka, Japan

Abstract

Baroreflex dysfunction contributes to the pathogenesis of cardiovascular diseases. The baroreflex comprises a negative feedback loop to stabilize arterial pressure (AP); its pressure-stabilizing capacity is defined as the gain ( G) of the transfer function ( H) of the baroreflex total loop. However, no method exists to evaluate G in a clinical setting. A feedback system with H attenuates pressure disturbance (PD) to PD/(1 + H). We hypothesized that the baroreflex attenuates the power spectrum density (PSD) of AP in the baroreflex functioning frequency range. We created graded baroreflex dysfunction in rats using a modified sinoaortic denervation (SAD) method [SAD; control (no SAD): n = 9; partial SAD (SAD in the right carotid sinus): n = 6, and total SAD (SAD in the bilateral carotid sinuses): n = 6] and evaluated the PSD of 12-h telemetric AP recordings in the light phase. Using the ratio of PSD at 0.01–0.1 Hz (PSD slope), we normalized them with the PSD in rats with complete baroreflex failure and derived the baroreflex index (BRI), which directly reflects G. We compared BRI and G obtained from a baroreflex open-loop experiment (reference G). The PSD slope became steeper with progression of baroreflex dysfunction. BRI (control: 2.00 ± 0.31, partial SAD: 1.28 ± 0.30, and total SAD: 0.06 ± 0.10, P < 0.05) was linearly correlated with reference G ( R2 = 0.91, P < 0.01). BRI accurately estimated G of the baroreflex and may serve as a novel tool for estimating the pressure-stabilizing capacity of the baroreflex in clinical settings. NEW & NOTEWORTHY This study proposed a novel method to estimate the gain of the baroreflex total loop, the so-called “baroreflex index” (BRI). BRI focuses on action potential variability in the frequency domain, considering baroreflex low-pass filter characteristics within 0.01–0.1 Hz. We demonstrated that BRI was linearly correlated with the reference gain of baroreflex in rats. Thus, BRI may contribute greatly to the development of a clinical tool for estimating baroreflex pressure-stabilizing capacity.

Funder

Japan Agency for Medical Research and Development

Japan Society for the Promotion of Science (JSPS)

Actelion Academia Prize 2015

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3