Apoptotic signaling induces hyperpermeability following hemorrhagic shock

Author:

Childs Ed W.,Tharakan Binu,Hunter Felicia A.,Tinsley John H.,Cao Xiaobo

Abstract

Hemorrhagic shock (HS) disrupts the endothelial cell barrier, resulting in microvascular hyperpermeability. Recent studies have also demonstrated that activation of the apoptotic signaling cascade is involved in endothelial dysfunction, which may result in hyperpermeability. Here we report involvement of the mitochondrial “intrinsic” pathway in microvascular hyperpermeability following HS in rats. HS resulted in the activation of the mitochondrial intrinsic pathway, as is evident from an increase in the proapoptotic Bcl-2 family member BAK, release of mitochondrial cytochrome c into the cytoplasm, and activation of caspase-3. This, along with the in vivo transfection of the proapoptotic peptide BAK (BH3), resulted in hyperpermeability (as visualized by intravital microscopy), release of mitochondrial cytochrome c into the cytoplasm, and activation of caspase-3. Conversely, transfection of the BAK (BH3) mutant had no effect on hyperpermeability. Together, these results demonstrate involvement of the mitochondrial intrinsic apoptotic pathway in HS-induced hyperpermeability and that the attenuation of this pathway may provide an alternative strategy in preserving vascular barrier integrity.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3