Endothelial gaps: time course of formation and closure in inflamed venules of rats

Author:

Baluk P.1,Hirata A.1,Thurston G.1,Fujiwara T.1,Neal C. R.1,Michel C. C.1,McDonald D. M.1

Affiliation:

1. Department of Anatomy, University of California, San Francisco 94143, USA.

Abstract

In the rat trachea, substance P causes rapid but transient plasma leakage. We sought to determine how closely the number, morphology, and size of endothelial gaps correspond to the time course of this leakage. Endothelial gaps were examined by scanning electron microscopy (EM), by transmission EM, or by light microscopy after silver nitrate staining. Substance P-induced leakage of the particulate tracer Monastral blue peaked at 1 min but decreased with a half-life of 0.3 min. The number of silver-stained gaps also peaked at 1 min then decreased significantly more slowly (half-life 1.9 min) than the leakage. Scanning EM revealed two types of endothelial gaps, designated vertical gaps and oblique slits. Vertical gaps predominated at peak leakage, whereas oblique slits became more common as the leakage diminished. Measurements of the mean diameter of vertical gaps made by light microscopy, scanning EM, and transmission EM were all in the range of 0.36-0.47 micron. Fingerlike endothelial cell processes that appeared during gap formation became shorter as the leakage diminished (mean length: 1.44 microns at 1 min compared with 1.06 microns at 3 min after substance P), suggesting a role in gap closure. We conclude that the plasma leakage occurring immediately after an inflammatory stimulus results from the rapid formation of endothelial gaps. Multiple factors, including alterations in gap morphology, gap closure, and changes in driving force, are likely to participate in the rapid decrease in the leakage.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

Cited by 126 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3