Cardiac phase-dependent time normalization reduces load dependence of time-varying elastance

Author:

Kind Taco,Westerhof Nico,Faes Theo J. C.,Lankhaar Jan-Willem,Steendijk Paul,Vonk-Noordegraaf Anton

Abstract

The time-varying elastance concept provides a comprehensive description of the intrinsic mechanical properties of the left ventricle that are assumed to be load independent. Based on pressure-volume measurements obtained with combined pressure conductance catheterization in six open-chest anesthetized sheep, we show that the time to reach end systole (defined as maximal elastance) is progressively prolonged for increasing ventricle pressures, which challenges the original (load-independent) time-varying elastance concept. Therefore, we developed a method that takes into account load dependency by normalization of time course of the four cardiac phases (isovolumic contraction, ejection, isovolumic relaxation, filling) individually. With this normalization, isophase lines are obtained that connect points in pressure-volume loops of different beats at the same relative time in each of the four cardiac phases, instead of isochrones that share points at the same time in a cardiac cycle. The results demonstrate that pressure curves can be predicted with higher accuracy, if elastance curves are estimated using isophase lines instead of using isochrones [root-mean-square error (RMSE): 3.8 ± 1.0 vs. 14.0 ± 7.4 mmHg ( P < 0.001), and variance accounted for (VAF): 94.8 ± 1.3 vs. 78.6 ± 14.8% ( P < 0.001)]. Similar results were found when the intercept volume was assumed to be time varying [RMSE: 1.7 ± 0.3 vs. 13.4 ± 7.4 mmHg ( P < 0.001), and VAF: 97.4 ± 0.5 vs. 81.8 ± 15.5% ( P < 0.001)]. In conclusion, phase-dependent time normalization reduces cardiac load dependency of timing and increases accuracy in estimating time-varying elastance.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3