Glutathione-S-transferase P protects against endothelial dysfunction induced by exposure to tobacco smoke

Author:

Conklin Daniel J.,Haberzettl Petra,Prough Russell A.,Bhatnagar Aruni

Abstract

Exposure to tobacco smoke impairs endothelium-dependent arterial dilation. Reactive constituents of cigarette smoke are metabolized and detoxified by glutathione- S-transferases (GSTs). Although polymorphisms in GST genes are associated with the risk of cancer in smokers, the role of these enzymes in regulating the cardiovascular effects of smoking has not been studied. The P isoform of GST (GSTP), which catalyzes the conjugation of electrophilic molecules in cigarette smoke such as acrolein, was expressed in high abundance in the mouse lung and aorta. Exposure to tobacco smoke for 3 days (5 h/day) decreased total plasma protein. These changes were exaggerated in GSTP−/−mice. Aortic rings isolated from tobacco smoke-exposed GSTP−/−mice showed greater attenuation of ACh-evoked relaxation than those from GSTP+/+mice. The lung, plasma, and aorta of mice exposed to tobacco smoke or acrolein (for 5 h) accumulated more acrolein-adducted proteins than those tissues of mice exposed to air, indicating that exposure to tobacco smoke results in the systemic delivery of acrolein. Relative to GSTP+/+mice, modification of some proteins by acrolein was increased in the aorta of GSTP−/−mice. Aortic rings prepared from GSTP−/−mice that inhaled acrolein (1 ppm, 5 h/day for 3 days) or those exposed to acrolein in an organ bath showed diminished ACh-induced arterial relaxation more strongly than GSTP+/+mice. Acrolein-induced endothelial dysfunction was prevented by pretreatment of the aorta with N-acetylcysteine. These results indicate that GSTP protects against the endothelial dysfunction induced by tobacco smoke exposure and that this protection may be related to the detoxification of acrolein or other related cigarette smoke constituents.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3