Aldose Reductase (AR) Mediates and Perivascular Adipose Tissue (PVAT) Modulates Endothelial Dysfunction of Short-Term High-Fat Diet Feeding in Mice

Author:

Conklin Daniel J.1234ORCID,Haberzettl Petra1234,MacKinlay Kenneth G.3,Murphy Daniel1,Jin Lexiao1234,Yuan Fangping24,Srivastava Sanjay1234,Bhatnagar Aruni1234

Affiliation:

1. Center for Cardiometabolic Science, University of Louisville, Louisville, KY 40202, USA

2. Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY 40202, USA

3. School of Medicine, University of Louisville, Louisville, KY 40202, USA

4. Christina Lee Brown Envirome Institute, Louisville, KY 40202, USA

Abstract

Increased adiposity of both visceral and perivascular adipose tissue (PVAT) depots is associated with an increased risk of diabetes and cardiovascular disease (CVD). Under healthy conditions, PVAT modulates vascular tone via the release of PVAT-derived relaxing factors, including adiponectin and leptin. However, when PVAT expands with high-fat diet (HFD) feeding, it appears to contribute to the development of endothelial dysfunction (ED). Yet, the mechanisms by which PVAT alters vascular health are unclear. Aldose reductase (AR) catalyzes glucose reduction in the first step of the polyol pathway and has been long implicated in diabetic complications including neuropathy, retinopathy, nephropathy, and vascular diseases. To better understand the roles of both PVAT and AR in HFD-induced ED, we studied structural and functional changes in aortic PVAT induced by short-term HFD (60% kcal fat) feeding in wild type (WT) and aldose reductase-null (AR-null) mice. Although 4 weeks of HFD feeding significantly increased body fat and PVAT mass in both WT and AR-null mice, HFD feeding induced ED in the aortas of WT mice but not of AR-null mice. Moreover, HFD feeding augmented endothelial-dependent relaxation in aortas with intact PVAT only in WT and not in AR-null mice. These data indicate that AR mediates ED associated with short-term HFD feeding and that ED appears to provoke ‘compensatory changes’ in PVAT induced by HFD. As these data support that the ED of HFD feeding is AR-dependent, vascular-localized AR remains a potential target of temporally selective intervention.

Funder

NIH

Jewish Heritage Fund for Excellence Research Enhancement Grant

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3